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Abstract. Bulk metallic glasses (BMGs) exhibit a rich variety of vibrational properties resulting from
significant atomic scale disorder. The Boson peak, which reflects an enhancement of states in the low
frequency regime of the vibrational density of states (VDOS), is one such experimental signature of amor-
phous materials that has gained much interest in recent times. However, the precise nature of these low
frequency modes and how they are influenced by local atomic structure remains unclear. Past simulation
work has demonstrated that such modes consist of a mixture of propagating and localized components,
and have been referred to as quasi-localized modes. Using standard harmonic analysis, the present work
investigates the structural origin of such modes by diagonalising the Hessian of atomistic BMG structures
derived from molecular dynamics simulations using a binary Lennard Jones pair potential. It is found that
the quasi-localized vibrational modes responsible for the low frequency enhancement of the VDOS exist
in a structural environment characterized primarily by low elastic shear moduli, but also increased free
volume, a hydrostatic pressure that is tensile, and low bulk moduli. These findings are found to arise from
the long-range attractive nature of the pair-wise interaction potential, which manifests itself in the corre-
sponding Hessian as long-range off-diagonal disorder characterized by a distribution of negative effective
spring constants.

1 Introduction

Amorphous solids, such as network and bulk metallic
glasses, exhibit novel thermal properties that have been
the focus of significant research activity and vibrant de-
bate [1–8]. Much of the work has been focused on the ob-
servation and understanding of the so-called Boson-peak,
which historically has been measured via Raman spec-
troscopy. Indeed when the Raman signal is divided by
appropriate temperature and frequency factors the result
was found to be temperature independent and propor-
tional to the vibrational density of states (VDOS) divided
by the square of the vibrational frequency [9]. Since the
proportionality factor between the modified Raman inten-
sity and the VDOS is believed to be a monotonically in-
creasing function of the vibrational frequency, much of the
contemporary work has assumed that the Boson-peak seen
by Raman is explicitly due to an anomaly in the VDOS,
reflecting an enhancement of low frequency states relative
to an elastic continuum Debye level. The low frequency
at which the maximum occurs is referred to as ΩBP – the
Boson-peak frequency. Importantly, when the Boson-peak
is appropriately rescaled with respect to ΩBP and the cor-
responding VDOS at ΩBP, its form is found to be largely
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independent of the material type, suggesting that its un-
derlying origin may be quite fundamental to the physics
of scattering in disordered systems.

Contemporary experimental techniques for the mea-
surement of the Boson-peak and the underlying acoustic
modes are performed via inelastic neutron or X-ray scat-
tering, both of which can directly probe the dynamical
structure factor as a function of both scattering vector and
energy transfer. Much of this experimental work involves
the investigation of how the dispersion of the experimen-
tally accessible longitudinal acoustic mode deviates from
linear behaviour, and how the width of the corresponding
dynamical structure factor broadens with increasing fre-
quency/wavevector. Experimentally the line-width of the
longitudinal mode, Γ , is found to increase rapidly with vi-
brational frequency, approaching the so-called Ioffe-Regel
limit ΓIR = ΩIR/π at frequency ΩIR; a regime where the
mean-free-path of a propagating mode is comparable to
its wavelength. It has been argued (for and against) that
experiment demonstrates a strong similarity between ΩIR

and ΩBP, that is, it is at the Boson-peak region where the
acoustic branches terminate [1–8]. One aspect somewhat
clouding the emerging experimental picture is that both
neutron and X-ray inelastic scattering probe the longitu-
dinal acoustic mode which strongly hybridizes with the
acoustic transverse mode for good glass formers, and only
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weakly for fragile glasses due to minor (or non-existent) di-
rectional bonding. This is an important aspect when con-
sidering the results of such experiments, since via Raman
scattering those excess vibrational states associated with
the Boson-peak appear to be transverse in nature [10,11].

Atomistic simulation has played an important role in
the progress to understand the low frequency vibrational
properties of amorphous systems. By diagonalising the
force matrix of a computer generated amorphous atomic
structure, early work using a Stillinger-Weber potential to
model a network glass [12] found that there exist low fre-
quency modes which involve a significantly reduced num-
ber of atoms in regions of low coordination. In later work
using repulsive pair-wise potentials to model soft sphere
glasses [13,14] low frequency modes were also found, al-
though a clear connection to local atomic structure, as in
the case for network glasses, could not be established. In
reference [14] their location did correspond to regions of
nearest neighbour compression, but with a somewhat re-
duced local density. In all these works, it was found that
these low frequency-modes depended on system size in
that the typical number of atoms involved scaled with vol-
ume (the total number of atoms). This conclusion was also
reached in the work of Mazzacurati et al. [15], who per-
formed a normal-mode analysis of a Lennard-Jones model
glass system as a function of simulation cell size.

The above resuls indicate that the low frequency
modes could not be considered truly localized, but rather
of a mixed nature involving both propagating modes and
localized modes, which are themselves not eigenstates
of the system – forming so-called quasi-localized modes.
In subsequent work on soft sphere glasses, Schober and
Oligschleger [16] developed a procedure to de-mix the
quasi-localized eigenstates into a size-dependent propa-
gating part and a size-independent localized part, find-
ing that it is the latter which is predominantly responsi-
ble for the enhancement of the number of low frequency
states (relative to the continuum level) and thus respon-
sible for the existence of the Boson-peak. Through the
calculation of the dynamical structure factor for a mini-
mum k-vector accessible to the system, reference [16] also
demonstrated that the Ioffe-Regel limit is reached at the
numerically evaluated Boson-peak frequency of the sys-
tem considered. Moreover, after the de-mixing procedure,
the corresponding dynamical structure factor of the prop-
agating part narrows. Since only the dynamical structure
factor, as seen by Brillouin scattering was calculated, no
conclusion in that work was made concerning the polariza-
tion of the most affected mode. Subsequent simulation did,
however, show that such quasi-localized states are trans-
verse in nature, coupling predominantly to the transverse
acoustic modes [17–19].

A connection between the existence of such vibrational
modes and the underlying structure of a glass was con-
sidered in a series of papers on model two- and three-
dimensional atomistic systems [20–22]. In these works,
elastic heterogeneity was investigated via the non-affine
response of an atomistic system to a global strain, and
it was found that only above a certain length-scale self

averaging is sufficient to allow for a classical continumm
elastic discription of the glassy medium. The vibrational
frequency associated with this length-scale was found to
correlate well with the location of the Boson peak, sug-
gesting that the contributing vibrational modes are inti-
mately related to the non-affine displacement regime. Im-
portantly, it was the transverse vibrational modes that
strongly coupled to the non-affine displacements, which
where found to be predominantly solenoidal like and there-
fore associated with localized shearing. This result pro-
vides a concrete connection between local structure and
the spatial extent of the anomalous low frequency mode.

Following these works, Shintani and Tanaka [23] have
preformed extensive large-scale finite temperature molec-
ular dynamics simulations of model two- and three-
dimensional glass systems from which they directly cal-
culated the polarization resolved dynamical structure
factors derived from current-current correlation functions.
In their work, clear numerical evidence was given that
the Boson-peak frequency corresponds to the Ioffe-Regel
frequency for the transverse modes and that the longi-
tudinal mode is less affected by the disorder, extending
well into the vibrational frequency range of their observed
Boson-peak region, and therefore having a higher Ioffe-
Regel frequency than ΩBP. This result was achieved for
a variety of atomic interactions, one of which involved an
angular dependent interaction whose contribution could
be connected to the fragility of the model system. They
found that with increasing fragility (a decreasing angular-
interaction contribution), the Boson-peak reduced in mag-
nitude, demonstrating that for systems such as bulk
metallic glasses (BMG), where bonding is primarily scalar
and dispersive (not strongly angular), the Boson-peak and
its associated effects are at a much reduced intensity, but
nevertheless present. These authors also found a correla-
tion between the local atomic density and the strength of
the local Boson peak derived from the local VDOS.

Perfoming molecular dynamics simulations of very
large model glass systems, Monaco and Mossa [24] inves-
tigated the dispersion properties of the accoustic branches
for frequencies an order of magnitude lower than that of
the Boson peak regime. They observed non-linear disper-
sion behaviour for both the transverse and longitudinal
polarization modes, in which the phase velocity exhibited
a minimum at their identified Boson peak frequency, re-
sulting in softening that naturally leads to an enhance-
ment of the vibrational density of states. Their simulations
also established that at frequencies below the Boson peak,
the broadening is proportional to ω4 suggesting strong
Rayleigh scattering is at play. At and above the Boson
peak the broadening changes to an ω2 dependence, where
the Ioffe-Regel limit is reached at the Boson peak fre-
quency for the transverse polarization modes, and at a
somewhat higher frequency for the longitudinal mode.

A number of avenues have been undertaken to de-
velop a theoretical understanding of these anomalous
vibrational modes and how they might relate to glass
structure, driven partly by inelastic scattering experi-
ments and partly by atomistic simulations. For example,
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Schirmacher [25] has developed a field theoretic continuum
model in which the vibrational dynamics is based on the
random spatial variation of the shear modulus, allowing
for a prediction of the dispersion and broadening prop-
erties of the (Brillouin) dynamical structure factor [26].
A different approach has involved the study of the secu-
lar equation for model interacting harmonic oscillators on
a regular lattice with spring constant disorder. For exam-
ple, Taraskin et al. [27] applied effective medium theory to
such models to study the VDOS of bulk systems, demon-
strating that the Boson-peak may be associated with the
lowest van Hove singularity of the reference crystalline sys-
tem shifting to the low frequency regime – the Boson-peak
is the direct result of a considerable decrease in the phonon
frequency at which the acoustic branches terminate. Nu-
merical diagonalization of such systems as a function of
spring constant disorder demonstrated that particular dis-
tributions of spring constant values (when the probability
of having a small or negative value is non-zero) can lead
to a Boson-peak [28,29]. Such work, which falls into the
category of random matrix models, has its historical ori-
gins in the very early work of Dyson, who considered the
VDOS for one dimensional model systems [30]. It is, how-
ever, difficult to reconcile the observed universality seen in
the experimental Boson peak with such results which are
quite dependent on the choice of spring constant distribu-
tion. Additionally, such work does not generally include
explicit topological disorder, and therefore direct compar-
ison of these simplified systems to real structural glass is
difficult.

Perhaps one of the most well known microscopic mod-
els that is able to predict an analytical form of the Boson-
peak in the VDOS is that of references [31–33], which for-
mally defines a description of the so-called quasi-localized
vibrational modes. The underlying idea is that within the
potential energy landscape, there exist local harmonic os-
cillators that interact bi-linearly with each other to form
a new harmonic minimum that is stabilized by anhar-
monicity, resulting in a renormalized VDOS exhibiting
the Boson-peak feature. Importantly, the origin and the
shape of the VDOS of the localized harmonic oscillators
is not of relevance, whether it may be due to libration as
in the case of network glasses, or due to intrinsic disorder
as in the case of fragile BMGs, resulting in a distribu-
tion of states that is vibrationally universal. This model
is found to compare favourably with both neutron and
X-ray inelastic scattering data for a wide range of struc-
tural glasses [8].

In this paper, these aspects are further investigated by
numerical diagonalisation of the Hessian (force matrix) de-
rived from computer generated three-dimensional binary
amorphous systems, using a well known model Lennard-
Jones potential [34]. The use of a Lennard-Jones inter-
atomic force description is extensive [15,20,21,23,24,35–37]
and indeed has been used most recently to investigate the
applicability of rigidity theory (primarily used in network
glasses) to central-force-based model glasses [38]. In the
present work, both k = 0 and k �= 0 values of the force
matrix are considered, allowing for the calculation of the

phonon dispersion curves admitted by an infinite array
of unit cells derived from atomisitic simulation, and also
the corresponding full dynamical structure factor. Despite
such dispersion curves being an artifact of the finite size of
the simulation cell, the calculation of k �= 0 provides addi-
tional information on the origin of the usually calculated
k = 0, in terms of how the transverse and longitudinal
accoustic branches affect their corresponding eigenvector
structure and what role atomic structure might play. In
particular, the nature of the resulting eigen-modes are in-
vestigated in terms of local atomic quantities, such as lo-
cal atomic volume, coordination, hydrostatic pressure and
the local atomic elastic constants. Here, the elastic stiff-
ness properties are investigated in terms of the eigen-shear
moduli derived from the Kelvin form of the elastic stiff-
ness matrix [39]. In Section 2, the atomistic simulation
methods, normal mode calculation and local atomic struc-
tural analysis methods are briefly introduced. In Section 3
the local atomic properties of the generated structures are
fully analysed and the core results of the numerical diag-
onalisation of the Hessian are given, and their connection
with the evaluated local atomic properties is investigated.

It is found that the quasi-local vibrational modes that
underlie the Boson peak structure of the vibrational den-
sity of states originate from vibrational modes whose spa-
tial environment correlates somewhat with regions of in-
creased free volume and tensile hydrostatic pressure (as
seen in Ref. [23]). The correlation is, however, found to be
strongest with atomistic environments characterized by
significantly reduced local elastic shear moduli. In Sec-
tion 4, these findings are then directly related to the long-
range off-diagonal structure of the underlying Hessian,
which is found to be responsible for both the local soft
elastic shear moduli and the low frequency localized vi-
brational modes, leading to the quasi-local eigenstates re-
sponsible for the low frequency Boson-peak structure for
the used Lennard-Jones potential.

2 Methodology

2.1 Atomistic simulation

For the present work a model (1 : 1) binary Lennard-Jones
(LJ) glass is employed:

VLJ (r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

, (1)

using the Wahnström parametrization [34]: ε = 1, and
σ11 = 1, σ12 = σ21 = 11/12 and σ22 = 5/6. The potential
is cut-off at rc = 2.5σ. The masses of the LJ particles are
taken as m1 = 2 and m2 = 1. Following standard prac-
tice when using such model LJ potentials, all simulation
results are reported in dimensionless units, where energy
is measured in ε, length in σ11 = σ, temperature in ε/kb,
and time in τ = (m1σ

2
11/ε)1/2 = (mσ2/ε)1/2.

Amorphous samples were produced by first generat-
ing a well-equilibrated liquid configuration at tempera-
ture Ti = 10 000 × kb [ε/kb] and hydrostatic pressure
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Table 1. Sample names with respect to size, quench rate and
final cell dimensions.

Sample Atom Quench Lx(σ11) Ly(σ11) Lz(σ11)
name number rate

Sample 0a 1728 η1 11.29 11.32 10.48
Sample 0b 1728 η2 11.18 11.45 10.42
Sample 0c 1728 η3 10.71 11.86 10.48
Sample 0d 1728 η4 13.69 10.03 9.65
Sample 1a 13 824 η1 22.27 21.95 21.91
Sample 1b 13 824 η2 21.97 22.20 21.89
Sample 1c 13 824 η3 21.85 22.39 21.74
Sample 2a 110 592 η1 44.13 44.11 44.00
Sample 2b 110 592 η2 44.03 44.03 44.05
Sample 2c 110 592 η3 43.89 44.10 43.97

pi = 8/160 [ε/σ3
11]. These structures were then quenched

by step-wise reducing both the temperature (ΔT =
−198.0 kb [ε/kb]) and pressure (Δp = −0.158/160 [ε/σ3

11])
at a given time interval and thereby defining a given
quench rate. Four quench rates were considered, corre-
sponding to η1 = 24.57/500, η2 = 24.57/5000, η3 =
24.57/50 000 and η4 = 24.57/500 000 [ε/(kbτ)]. For the
MD simulations a Parinello-Rahman [40] baro-stat was
used to evolve the periodic cell side lengths’ response
according to the applied hydrostatic pressure and an
Anderson-Hoover [41] thermostat was used for temper-
ature control. The baro-stat was constrained to an ortho-
rhombic geometry. Three samples are presently considered
containing 1728, 13 824, and 110592 atoms. Subsequent to
the quenching procedure, the samples, now at a temper-
ature Tf = 100 × kb [ε/kb] and pressure pf = 0.1/160
[ε/σ3

11], were relaxed to 0 K and zero hydrostatic pres-
sure via molecular statics, applied to both the atomic co-
ordinates and the simulation cell side-lengths using the
Parrinello-Rahman method. Tf is approximately one fifti-
eth of the system’s glass transition temperature. Table 1
collects some of the properties of the samples and also de-
fines the naming convention used throughout the present
work.

2.2 Normal mode analysis

The fully relaxed samples of the previous section have N
atoms, an orthorhombic volume equal to LxLyLz, and and
an energy equal to E0 (R1, · · · , RN ) evaluated under peri-
odic boundary conditions, where Ri is the position vector
of the ith atom. To investigate the vibrational properties
of the infinite system constructed by an array of N ′ such
ortho-rhombic unit cells (N ′ → ∞), the total energy with
respect to a variation of the N ′×N independent infinitesi-
mal atomic displacement vectors ui,I can be formally writ-
ten as E ({Ri,I + ui,I}) with I indexing the unit-cell and
ranging between 1 and N ′, i indexing each atom within
the Ith unit-cell and ranging between 1 and N , and where
Ri,I = Ri + ΔRI . Here ΔRI is the position of the Ith
unit cell and is given by ΔRI = (nxLx, nyLy, nzLz) with
{nx, ny, nz} ∈ Integers.

To second order in ui,I , E ({Ri,I + ui,I}) = E ({ui,I})
can be explicitly written as

E ({ui,I}) ≈ N ′E0 (R1, · · · , RN )

+
1
2

∑
I,J=1,N ′;i,j=1,N ;μ,ν=1,3

uμ
i,IΔ

μν
i,I;j,Juν

j,J

(2)

where the Greek indices index the polarization directions
and

Δμν
i,0;j,0 = Δμν

ij =
∂2E0 (R1, · · · , RN )

∂Rμ
i ∂Rν

j

(3)

from which Δμν
i,I;j,J may be easily constructed by the ap-

propriate use of neighbouring images of the unit cell.
In terms of a general pair interaction, V (r), equa-

tion (3) may be written as

Δμν
ij =

∑
a,a�=i

Hμν
ia δij − Hμν

ij (1 − δij) , (4)

where

Hμν
ij =

[
V ′′ (Rij) − V ′ (Rij)

Rij

]
Rμ

ijR
ν
ij

R2
ij

+
V ′ (Rij)

Rij
δμν . (5)

In equation (4), the first term gives the 3×3 block diagonal
elements and the second term the off-diagonal block ele-
ments, which can be seen as the effective spring constants
of the system. In the above equations, the δ represents the
Kroneck-delta in the associated indices.

Due to translational symmetry with respect to the unit
cell coordinates, ΔRI , a corresponding reciprocal space
can be defined and the Hessian Δμν

i,I;j,J may be diagonal-
ized with respect to I and J , transforming equation (2)
to

E ({ui(k)}) ≈ N ′E0

(
R0

1, · · · , R0
N

)
+

1
2

∑
i,j=1,N ;μ,ν=1,3;k∈1stBZ

uμ
i (k)Δμν

i,j (k)uν
j (k) (6)

where the irreducible Hessian is

Δμν
ij (k) =

∑
IJ

Δμν
i,I;j,J exp(ik · (RI − RJ)), (7)

and the wavevector, k, spans the range of the first
Brillouin zone: (±π/Lx,±π/Ly,±π/Lz).

The normal modes of the infinite system may then be
obtained by the solution of the eigenvalue equation,

∑
jν

(
mi [ωn(k)]2 δijδ

μν − Δμν
ij (k)

)
uν

j,n(k) = 0 (8)

where mi is the atomic mass of the ith atom. For
each of the N ′ reciprocal space vectors, k, there ex-
ists 3N eigenstates, uν

j,n(k) with eigenfrequency ωn(k)
(n = 1, . . . , 3N). It is these normal modes that will be
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used to investigate the vibrational properties of the sam-
ples produced in the previous section1. It is noted that
the eigenstate, uν

j,n(k) for any non-zero value of k, has
the same physical standing as the k = 0 eigen-state calcu-
lated in past work [12–14]. Indeed uν

j,n(k = 0) corresponds
to what has been calculated in these past works.

From the resulting eigen-frequencies, ωn(k), the VDOS
with respect to the phonon frequency, ω, may be calcu-
lated:

ρ(ω) =
∑

n

V

(2π)3

∫
1stBZ

d3kδ (ω − ωn(k))

≈
∑

n

δ (ω − ωn(k = 0)) , (9)

where the last step is a good approximation when N is
large and only the overall shape of the VDOS is of in-
terest. For a detailed investigation of the Boson-peak re-
gion, particularly when it has a weak signature (as in the
present work), the full Brillouin zone integration is used.
Indeed, it is noted that in using equation (1) as a model
for cohesion, the concentration of low frequency modes is
expected to be low compared to that when using the soft
sphere glass cohesion model [13]. Diagonalization of the
Hermitian matrix generated via equations (3) and (7) is
performed either via the Intel MKL-Lapack routines2 or
the Arnoldi package [42].

The number of atoms participating in a particular
eigenstate, uν

j,n(k), may be obtained via the participation
number [43]

PNn(k) =

[∑
i

|ui,n(k)|4
]−1

, (10)

where ui,n(k) is the three-dimensional polarization vec-
tor of atom i for the mode (n, k). Assuming a normalized
eigenvector, PNn(k) will thus range between unity (when
the eigenstate is concentrated on just one atom) and N
(when the eigenstate is distributed evenly over the entire
sample). The participation ratio, defined as PNn(k)/N , is
also often used when comparing samples of different sizes,
since for certain eigenstates the fractional value can be in-
sensitive to the effects of box-normalisation and therefore
the size of the employed simulation cell. The participa-
tion number/ratio has been used extensively in the normal
mode study of the vibrational modes of glasses [13–15]. It
is emphasized that the participation number/ratio gives
information about which atoms contribute to the eigen-
state, however, it having a low value does not consitute
evidence that the eigen-state is localized. Localization can
only be formally established if the participation ratio ap-
proaches zero in the bulk limit. Since the participation

1 As is normally the case, the dynamical matrix divided by
a
√

mimj term is, in fact, diagonalised yielding the eigenstates

u′µ
i , from which the true eigen-states are reconstructed via

uµ
i = u′µ

i /
√

mi.
2 Intel. Intel Math Kernel Library (Intel MKL) 10.2, avail-

able: http://software.intel.com/en-us/intel-mkl/.

number/ratio effectively identifies those atoms which are
involved in the particular oscillation mode, it may be
used to define a characteristic local environment seen by
the entire eigen-mode, by constructing the participation-
number-weighted (PNW) average for any local atomic
quantity Xi:

〈X〉n,k =
∑

i

Xi |ui,n(k)|4 /
∑

i

|ui,n(k)|4 . (11)

To investigate sound propagation, the longitudinal and
transverse dynamical structure factors may be easily de-
rived from the overlap of each mode with a plane wave of
the appropriate polarization [23]. Specifically,

SL(q, ω) ∼ q2

ω2

∑
n

∣∣∣∣∣
∑

i

[un,i(q) · q] exp (iq · ri)

∣∣∣∣∣
2

δ(ω−ωn)

(12)
and

ST (q, ω) ∼ q2

ω2

∑
n

∣∣∣∣∣
∑

i

[un,i(q)×q] exp (iq · ri)

∣∣∣∣∣
2

δ(ω−ωn).

(13)
As discussed in Section 1, the dynamical structure factor is
an important quantity since the longitudinal component is
experimentally accessible via neutron and X-ray inelastic
scattering.

2.3 Local atomic properties

For a pair-potential, V (r), the global stress tensor may be
calculated via

σμν =
1

2V

∑
ij

V ′ (Rij)
Rμ

ijR
ν
ij

Rij
(14)

and the global elastic stiffness tensor via

Cμναβ =
1

2V

∑
ij

[
V ′′ (Rij) − V ′ (Rij)

Rij

]
Rμ

ijR
ν
ijR

α
ijR

β
ij

R2
ij

+ σνβδμα + σναδμβ . (15)

Here, in both cases, V is the volume of the simulation
cell. It is noted that for a system under zero external
stress, the last two terms in equation (15) are equal to
zero. To correctly determine the contributions arising from
one or more atoms, thereby defining either a local stress
or elastic constant matrix, the individual bond contribu-
tions in equations (14) and (15) must be appropriately
weighted [44,45]. Given a volume element labeled as a and
any two atoms i and j, and drawing a line between these
two atoms resulting in a length Rij , the weight of that
bond to the chosen element is Λa,ij = ΔaRij/Rij , where
ΔaRij is the total line length of Rij that lies within the
volume element a. The resulting local stress and elastic
stiffness tensors are

σμν
a =

1
2Va

∑
ij

V ′ (Rij)
Rμ

ijR
ν
ij

Rij
Λa,ij (16)
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and

Cμναβ
a =

1
2Va

∑
ij

[
V ′′ (Rij) − V ′ (Rij)

Rij

]

×Rμ
ijR

ν
ijR

α
ijR

β
ij

R2
ij

Λa,ij

+σνβ
a δμα + σνα

a δμβ , (17)

where Va is the volume of the chosen ath volume element.
In the above, for heterogeneous atomic configurations, σμν

a

is generally not zero when the global stress is zero. It is
noted that in equations (14) and (15), atoms i and j do not
need to lie within the volume Va to contribute to the stress
or elastic tensor for that particular volume element. In
the present work, volume partitioning is performed at the
atomic level via a Voronoi tessellation using the voro++
package [46] to obtain a measure of the non-overlapping
local atomic volume of each atom in the simulation cell.

Equation (15) is referred to as the Born contribution
to the elastic constants and represents the elastic stiffeness
corresponding to a purely affine distortion of the atomic
system. Previous work has however shown that for glassy
systems there is a significant non-affine component that
contributes to the elastic constants [21,22,35] and there-
fore a considerable part of the elastic energy. Thus at zero
Kelvin, equation (15) will give an over-estimation of the
experimentally determined elastic constants. Whilst it is
possible to directly calculate this global contribution via
the inverse of the dynamical matrix [44], the present work
will instead investigate the effect on of the non-affine com-
ponent on both the bulk modulus and the isotropic shear
modulus via the systems energy dependence as a function
of a finite simulation cell distortion. Following [21], an ap-
propriate affine transformation is applied to the periodic
simulation cell, and for each value of the corresponding
distortion parameter γ, the atomic coordinates are relaxed
using the conjugate gradient method. To obtain the bulk
modulus (K) an isotropic volume change is needed and is
given by the strain transformation matrix,

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ γ, (18)

which, according to linear elasticity, will give an energy
dependence 9/3Kγ2. To obtain the isotropic shear modu-
lus (μ), the strain transformation matrix,

⎛
⎝1 0 0

0 − 1
2 0

0 0 − 1
2

⎞
⎠ γ, (19)

is used with the corresponding elastic energy equalling
9/3μγ2.

Despite the inadequacy of the Born term to describe
the elasticity of an amorphous system, the correspond-
ing local definitions of the Born elastic modulii (Eqs. (16)
and (17)) offer useful information on the local environ-
ment of each atomic in terms of the higher derivatives of

the crystal potential, and it will be these terms that will
be used in subsequent sections.

For a more lucid characterization of the local elas-
tic moduli the 6 × 6 Kelvin matrix notation [39] is used
rather than the more usual Voigt matrix notation, since
the former reduction results in a stress-strain relation
that retains its tensorial nature. This has the benefit that
the resulting elastic stiffness matrix may be diagonalised
to obtain the dilation modulus and the five independent
eigen-shear modes. In terms of a Voigt elastic stiffness ma-
trix CV

αβ the corresponding Kelvin elastic stiffness (tensor)
matrix is

Cμν
K = AμνCμν

V , (20)

where

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1
√

2
√

2
√

2
1 1 1

√
2
√

2
√

2
1 1 1

√
2
√

2
√

2√
2
√

2
√

2 2 2 2√
2
√

2
√

2 2 2 2√
2
√

2
√

2 2 2 2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (21)

The dilation modulus is equal to three times the bulk mod-
ulus, and the five eigen-shear moduli are determined from
the eigenvalues of P̃−1·C̃k ·P̃ , where P̃ projects out volume
changes, and is given by

P̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3 − 1

3 − 1
3 0 0 0

− 1
3

2
3 − 1

3 0 0 0
− 1

3 − 1
3

2
3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

For a perfectly isotropic environment, all five Kelvin eigen-
shears will be equal to 2μ (where μ is the usual isotropic
shear modulus).

The Kelvin elastic stiffness matrix has been most re-
cently applied to the investigation of connectivity of elas-
tic heterogeneity at finite temperature in model metallic
glasses and its relation to structural stability [47]. This
work has shown that when the appropriate thermal con-
tribution to the local elastic moduli is included, within
the typical atomistic timescale, the temperature at which
percolation of negative local eigen-shears occurs (leading
to global mechanical failure) correlates well with the sys-
tem’s glass transition temperature.

3 Results

3.1 Local structure analysis

Figure 1 displays some global properties of the fully re-
laxed structures as a function of the logarithm of the in-
verse quench rate for all three sample sizes. Figures 1a
and 1b show respectively that the average energy and av-
erage volume per atom decrease linearly with respect to
the logarithm of the inverse quench rate. On the other
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Fig. 1. (Color online) (a) Average energy per atom, (b) av-
erage volume per atom, (c) global bulk modulus, (d) global
isotropic shear modulus, and (e) global Poisson’s ratio as a
function of inverse quench rate and sample size. In (d) and (e)
data is also shown from six sample realizations of similar size
to sample 0.

hand, the global bulk modulus (Fig. 1c) and global shear
modulus (Fig. 1d) both increase. For the case of the global
shear modulus significantly more scatter is evident, which
reduces with increasing sample size. The rate of increase of
these two moduli is comparable, resulting in little change
in the global Poisson ratio (see Fig. 1e). This is partic-
ularly the case for sample 2, which has an almost con-
stant Poisson ratio as a function of inverse quench rate
due to the significantly less scatter in sample 2’s global
shear modulus. Thus the Poisson ratio, as calculated via
equation (15), appears not to be so sensitive to the de-
gree of structural relaxation. To gain quantitative insight
in the degree of scatter in the shear modulus (and there-
fore Poisson ratio) Figures 1d and 1e also display data
coming from six realizations similar in size to sample 0
for the first three quench rates. Despite the scatter in Fig-
ure 1d, a clear increase in the shear modulus with respect
to decreasing quench rate is evident. The scatter also ap-
pears to be insensitive to the actual quench rate suggest-
ing its origin lies in a fundamental heterogeneity at the
length scale of sample 0, which can be well averaged at
the length scale of sample 2. Since all three quench rates
involve precisely the same sample preparation sequence,
the horizontal axis of Figure 1 may also be viewed as an

Table 2. Unrelaxed and relaxed bulk elastic modulii in units
of ε/(σ11)

2, calculated numerically by distorting the simulation
cell. The resulting relaxed Poisson ratio is also listed.

Sample Kunrel μunrel Krel μrel νrel

Sample 0c 77.23 47.04 75.13 21.37 0.37
Sample 0d 77.80 47.80 75.67 23.63 0.36
Sample 1c 77.22 46.24 76.06 19.92 0.38
Sample 2c 77.23 46.42 75.58 20.15 0.38

effective sample preparation time, and thus the approx-
imately linear decrease in energy and volume per atom
indicates a logarithmic slowing down of the relaxation dy-
namics with respect to the quench rate – an observation
which is expected for glassy materials [48]. In summary,
reducing the quench rate results in more energetically re-
laxed samples characterized by a higher number density
and higher elastic stiffness moduli.

To investigate the contribution of the expected non-
affine contribution to the bulk modulus and isotropic shear
modulus, the procedure associated with equations (18)
and (19) is now used. Table 2 lists the resulting elas-
tic constants for a range of samples, with and without
(purely affine) relaxation when γ is varied from −0.001
to 0.001. Such a small range of γ ensures that no irre-
versible structural transformation occurs. It is seen that
without relaxation the elastic constants differ little from
those explicitly calculated using equation (17). However
when structural relaxation is allowed, the bulk modulus
decreases only slightly, whereas the shear modulus is re-
duced by more than half resulting in a significant increase
in the Poisson ratio. This result was also found in the work
of [21] and is a signature that the non-affine component is
mainly associated with shear deformations.

Figure 2 now displays the distribution of local atomic
quantities for sample 0, for all four quench rates consid-
ered. In all panels, the vertical red line indicates the cor-
responding global quantity taken from Figure 1 where for
the case of (e) (the Kelvin eigen-shears), the appropriate
quantity is by definition twice the isotropic shear modu-
lus. Figures 2a and 2b show the distribution of the local
energy and local Voronoi volume. A two-peak structure
is clearly evident in both figures reflecting the two atom
types of the LJ interaction, where in the case of the local
atomic energy (Fig. 2a), the left-most peak corresponds
to atoms of type ‘1’ and the right-most to atoms of type
‘2’. For the case of local Voronoi volume, the left-most
peak in Figure 2a corresponds to atoms of type ‘2’ and
the right-most to atoms of type ‘1’; see also Figure 3b.
Thus atoms of type ‘2’ generally exist in regions of reduced
Voronoi volume when compared to the globally averaged
volume per atom. The twin-peak structure of the Voronoi
volume may be qualitatively rationalized by the fact that
for atoms of type ‘1’, σ11 = 1, and for atoms of type ‘2’,
σ22 = 5/6. Thus the LJ potential of atoms of type ‘1’ is
more extended in range than that of type ‘2’, in particular
at the inner region of the potential, leading to an expected
larger local Voronoi volume.
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Fig. 2. (Color online) Distribution of local (a) energy, (b)
Voronoi volume, (c) hydrostatic pressure, (d) bulk modulus,
and (e) the five eigen-shear moduli in ascending order for sam-
ple 0 for the four different quench rates. In (a) and (b) the
dual peak structure arises from single peak distributions of the
indicated atom type.

No such twin-peak structure can be visually resolved in
the distribution of the local hydrostatic pressure (Fig. 2c),
local bulk modulus (Fig. 2d), and the local eigen-shears
(Fig. 2e, which displays the distributions for all five local
eigen-shear moduli). Figure 2e shows that the three low-
est local eigen-shears are considerably smaller than the
global shear modulus (Fig. 1d), where for the lowest eigen-
shear a certain proportion is negative. General inspection
of Figure 2 shows that the distributions vary little as a
function of quench rate, indicating that the global varia-
tions in these quantities seen in Figure 1 are quite small
when compared to the standard-deviations of the corre-
sponding local quantities. The extremely broad range of
eigen-shear moduli seen in Figure 2e is the origin of the
increased scatter of the global elastic shear modulus seen
in Figure 1d, where it is only in the largest sample that
a distinctly smooth trend of increasing shear modulus is
seen as a function of inverse quench rate.

For sample 0d, when the hydrostatic pressure and elas-
tic moduli distributions are ‘type’ resolved, it is found that

Fig. 3. (Color online) Atom type resolved (a) pair distribution
function, (b) Voronoi volume distribution, (c) local coordina-
tion distribution, and (d) local coordination-Voronoi scatter
graph for sample 2c.

two quite similar distributions appear which are shifted
relative to each other, although the significant scatter in
the distributions prevents a statistically meaningful quan-
titative analysis. However, for the case of sample 2c, where
there is significantly less scatter in the derived distribu-
tions (not shown), quantitative differences become evi-
dent. For the case of the local hydrostatic pressure, the
type resolved single peak distributions are identical in
shape but shifted relative to each other, such that the
global average hydrostatic pressure of atoms of type ‘2’
is negative (tensile) and for atoms of type ‘1’ is positive
(compression). These amounts are approximately 20% of
the standard deviation of the distribution and add to ap-
proximately zero giving a total hydrostatic pressure of ap-
proximately zero. The differences in type resolved pressure
are, however, small since no double hump structure is evi-
dent, as seen in Figures 2a and 2b for the local energy and
Voronoi volume. For the type resolved local bulk modu-
lus distributions no statistical meaningful difference in the
distributions could be determined. However for the local
eigen-shear modulus, the type resolved distributions indi-
cate that the distributions for type ‘2’ atoms are shifted
to lower values to the extent that the majority of negative
local lowest eigen-shear modulus values arise from atoms
of type ‘2’.

Figure 3a displays the pair distribution function for
sample 2c, where the individual contributions from type
‘11’, type ‘22’ and type ‘12’ bonds are also shown. Its form
is in agreement with previous work using the same LJ po-
tential [49]. Inspection of this figure reveals a well-defined
coordination shell regime (r < 1.4σ) with a three-peak
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structure that is a direct result of atom type resolved
contributions, where on average atoms of type ‘2’ are
closer together than atoms of type ‘1’, and intermediate
bond distances exist primarily between atoms of different
type. This finding is responsible for the two-peak struc-
ture seen in the distribution of Voronoi volume (Fig. 2b)
for sample 0d, where Figure 3b now displays the corre-
sponding type resolved Voronoi volume distributions for
sample 2c. The mean local Voronoi volume for type ‘1’
atoms is 0.85σ3 and for type ‘2’ atoms it is 0.69σ3. In-
sight into how local structure can facilitate such a result
may be gained by investigating the type resolved coordi-
nation number, where the latter has been calculated by
counting the number of faces per atom in the atomic-
scale Voronoi construction. This measure of coordination
was found to be similar to simply counting the number of
neighbours that are within a radial distance defined here
to be r < 1.4σ. Figure 3c displays the type resolved coor-
dination distributions, showing that atoms of type ‘2’ have
a lower coordination than atoms of type ‘1’. The average
coordination for type ‘1’ atoms is ≈15.1 and for type ‘2’
atoms is ≈12.8, and the combined average is 13.9. Thus
the smaller local Voronoi volumes of type ‘2’ atoms are
accommodated by a smaller coordination number and the
larger local Voronoi volumes of type ‘1’ atoms are accom-
modated by a correspondingly larger one. Such an accom-
modation mechanism tends to minimize fluctuations in lo-
cal atomic density. Figure 3d shows a scatter-plot between
coordination and Voronoi volume for both types of atoms,
and it is observed that within each type resolved distribu-
tion a similar trend is seen: those atoms with a smaller co-
ordination generally have a smaller local Voronoi volume.
Similar results are obtainable for the smaller samples.

3.2 Vibrational properties

For the detailed analysis of the vibrational properties the
most relaxed sample of each simulation cell size is used.
Other samples coming from repeated sample production
and/or different quench rates exhibited similar properties
to what will be presently shown. The insensitivity of the
vibrational properties to a particular realization of the
disorder produced by use of a Lennard-Jones potential
has also been encountered in past work [21].

3.2.1 Phonon density of states and the participation number

Figure 4a displays the vibrational DOS of sample 0d de-
rived from binning the k = 0 phonon frequency eigen-
values for the four different quench rates (see Eq. (9)).
The VDOS is normalized to the number of states per
atom, which is three. Similar data is shown for sam-
ple 1, for its slowest quench rate. Inspection of these
curves reveals a featureless distribution of states free of
the Van Hove singularity structure seen in crystalline sys-
tems. The overall form of the VDOS is typical of past work

Fig. 4. (Color online) (a) Vibrational density of states for dif-
ferent quench rates and sample sizes, calculated via binning
of the ωk=0 eigenvalues. (b) Low frequency vibrational density
of states for sample 0d, using a first Brillouin zone integra-
tion scheme and a simple continuum Debye model that em-
ploys the global relaxed elastic constants listed in Table 2.
In this figure, the data taken from the k = 0 VDOS of
(a) is also shown. Inset: plot of sample 0d VDOS divided
by the ω2 (c) Participation number for sample 0d and sam-
ple 1c (inset, high-frequency regime plots using a logarithmic
scale) and (d) the corresponding participation ratio (inset, low
frequency regime). In (c), the red arrows indicate the corre-
sponding three translational zero frequency modes for each
sample.

and well described by the universal form suggested in ref-
erences [36,37]. Such a VDOS is also typical of weakly dis-
ordered systems such as grain boundaries in a nanocrys-
talline network [50–52]. Inspection of Figure 4a reveals
that the form of the VDOS at this resolution is not so
dependent on the quench rate used and the size of the
sample. By using only the k = 0 eigenvalues, and dividing
by ω2, it becomes evident that the low frequency struc-
ture of the VDOS is not of sufficient detail to reveal the
expected Boson-peak structure for the currently employed
LJ inter-atomic potential. To gain the needed resolution in
the low frequency limit a full Brillouin zone integration is
used (Eq. (9)) and Figure 4b displays the resulting VDOS
of sample 0d for the low frequency regime. To do this, a
regular reciprocal-space mesh over the (orho-rhombic) ir-
reducible Brillouin zone was used to integrate equation (9)
in which the frequency delta-function was approximated
by a normalized Lorentzian of width of 0.1

√
2 1/τ . Also

shown is the similarly normalized Debye VDOS,

ρDebye(ω) =
1

2π2

(
1
v3
l

+
2
v3
t

)
ω2, (23)
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where the longitudinal and transverse sound velocities are
given respectively by

vl =

√
K + 4

3μ

m0
(24)

and

vt =
√

μ

m0
. (25)

Here m0 is the mass density taken as m0 = N(m1 +
m2)/(2V ). Equations (24) and (25) are derived using
isotropic elasticity, where K is the bulk modulus and μ is
the isotropic shear modulus. It was found that the Debye
VDOS agrees extremly well with the numerical VDOS
when the relaxed elastic constants in Table 2 are used
rather than the unrelaxed values or those calculated via
equation (17). This result indicates that the structural re-
laxation occuring during the finite distortion procedure
described in Section 3.1 is well described by the Harmonic
approximation of the energy (Eq. (2)). Figure 4b reveals
an enhancement of states with respect to the Debye level
beginning at a frequency ΩOBP ≈ 1.9. Here ΩOBP should
not be considered as the frequency of the Boson-peak, but
rather as the frequency indicating the onset of the Boson-
peak region.

Throughout the remainder of this work, the low fre-
quency band-edge region will refer to the region close to
and at ΩOBP. The inset for Figure 4b plots the VDOS in
the standard representation of ρ(ω)/ω2. Figures 4a and 4b
demonstrate that although there exists an enhancement of
low frequency modes, the smooth and continuous Boson
peak structure seen experimentally will not be obtainable
using the present sample sizes with the current LJ poten-
tial. This indicates that the present LJ parametrization re-
sults in a fragile glass structure, generating a rather weak
Boson peak signature, as expected for systems described
by pair-wise atomic interactions [23].

To gain insight into the nature of the eigen-modes
that lead to the VDOSs seen in Figure 4a, the partic-
ipation number at k = 0 is plotted in Figure 4c for
the entire bandwidth of phonon frequencies of sample 0d
and sample 1c. The overal form of the curves are similar
to that seen in references [14–16]. In the high-phonon-
frequency regime the eigenstates involve a considerably
reduced number of atoms – between three and several
tens of atoms. This feature is independent of sample size
(see inset of Fig. 4c, where the participation num-
ber is plotted using a logarithmic scale), suggesting
that truly localized states exist in this regime. Such
localized vibrational states have also been observed in
grain-boundary structures, where their location could be
correlated with regions of compressive stress and under-
coordinated atoms [51,52]. For the current work, in addi-
tion to visual inspection of the eigen-modes, the localized
nature of the high-frequency states was confirmed by per-
forming a statistical analysis of the phonon frequency sep-
aration by investigating the distribution of the frequency
intervals between neighbouring eigenvalues. If such states

are truly localized then any two states with neighbouring
phonon frequency eigenvalues should be uncorrelated and
thus the distribution will follow simple Poisson statistics,
since spatially any two such states will be on average well
separated [53]. This behaviour was indeed confirmed from
the high-frequency eigenvalue data in Figures 4c and 4d.

At intermediate phonon frequencies, a clear depen-
dence of the participation number on system size is ap-
parent. However, by dividing the participation number by
the number of atoms (to obtain the participation ratio) the
two curves fall on top of each other – see Figure 4d. Such
a simple volume scaling indicates extended modes that
are normalized to the simulation cell. The corresponding
participation ratio values in this frequency regime may be
rationalized by considering the participation number de-
rived from a normalized plane wave continuum solution:
φn(x) = sin(2πnx/L)/L3/2, which gives a participation
ratio equal to 2/3. Thus in this frequency regime, the par-
ticipation numbers are slightly less than that expected
for a continuum homogeneous model description indicat-
ing an underlying heterogeneity of the modes. In terms
of a level spacing analysis, references [36,37] have found
that for this region of frequencies, the overal fluctuation
properties of the VDOS is well described by the Gaussian
orthogonal ensemble of random-matrices, rather than by
Poisson statistics, indicating that the underlying modes
are indeed extended and therefore system size dependent.

At very low frequencies (the Boson-peak regime) the
participation number again reduces, indicating modes in-
volving a considerably reduced number of atoms. However,
unlike the high-frequency regime, many of these modes
do depend on system size as evidenced by the similarity
of the participation ratio in this regime, see Figure 4d
and its inset, and therefore may also be referred to as ex-
tended modes. Finally, for all samples, there exist three
zero-frequency modes whose participation numbers are
equal to the number of atoms and whose participation
ratio is equal to unity. In terms of the participation num-
ber, these modes are indicated with red arrows for each
sample in Figure 4c and represent the three-dimensional
translational invariances (k = 0) of the system.

To relate the participation number data seen in Fig-
ure 4 to atomic structure, Figures 5 and 6 now display the
PNW (Eq. (11)) local atomic properties for sample 1d as
a function of the corresponding phonon eigen-frequency,
where each eigen-mode has been coloured according to its
corresponding participation ratio. Specifically, Figure 5a
displays the PNW atom-type, revealing that the high-
frequency localized eigenstates mainly consist of atoms
of type ‘2’. On the other hand, at the lower phonon fre-
quency end of the figure, the eigenstates generally consist
of both types of atoms with the exception of a few eigen-
states at the low frequency band-edge that are dominated
by atoms of type ‘2’. Figures 5b and 5c show respectively
the Voronoi volume and coordination as a function of the
corresponding phonon eigen-frequency. Both the Voronoi
volume and coordination tend to decrease with increas-
ing phonon frequency, a trend that can be largely ratio-
nalized by the frequency dependence of the atom type
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Fig. 5. (Color online) Scatter plots of participation-number-
weighted (a) atom-type, (b) local Voronoi volume and (c) lo-
cal coordination as a function of corresponding phonon eigen-
frequency for sample 0d. Data is colour-coded according to the
participation ratio for each corresponding mode, see colour bar.

(Fig. 5a) and the corresponding distributions of Voronoi
volume and coordination seen in Figures 3b and 3c.

Figure 6a now shows the PNW local energy, demon-
strating a trend that again can be largely rationalized by
the corresponding atom-type behaviour. Figure 6b shows
the PNW local hydrostatic pressure revealing that the
atomic environment of the high-frequency localized states
is generally under a compressive stress. This observation
was also made for general grain boundaries in computer
generated metallic bulk nanocrystalline systems [51,52]
and predicted by theory [54]. Figure 6b further shows
that below a certain phonon frequency threshold (less than
approximately 35 (1/τ)), the PNW hydrostatic pressure
becomes negative indicating that in the region of size-
dependent extended modes, the atomic environment seen
by the eigenstates is on average under a tensile hydro-
static pressure. At very low phonon frequencies, the PNW
hydrostatic pressure becomes less negative eventually ap-
proaching the bulk global value of (approximately) zero. It
is noted that unlike the case of a regular crystalline lattice,
the globally averaged local pressure for such a disordered
system will not equal zero, even though the global pres-
sure is zero, since via equation (16) it may be seen that
it is the local-volume-weighted average of the local stress
which is identical to the global stress of the system, and
not simply the direct sum of the local stresses. The glob-
ally averaged local pressure is, however, small and it is for
this reason that the fractional values in Figure 6b (and
also in Fig. 9b of Sect. 3.2.2) are so large.

Figure 6c now plots the fractional change in bulk mod-
ulus relative to the bulk global value. In this figure it is
seen that the high-frequency eigenstates are generally in

Fig. 6. (Color online) Scatter plots of participation-number-
weighted local (a) energy, (b) hydrostatic pressure, (c) bulk
modulus, and (d) lowest eigen-shear as a function of corre-
sponding phonon eigen-frequency for sample 0d. The vertical
axes in (b) to (d) are plotted as the fractional change (fc)
relative to the corresponding globally averaged value. Data is
colour-coded according to the participation ratio for each cor-
responding mode, see colour bar.

regions of higher local bulk modulus, whereas at the lower
frequencies the atomic environment is mainly in regions of
lower local bulk modulus. Figure 6d displays the fractional
change in the PNW lowest eigen-shear (where a value
of less than −1.0 indicates a negative modulus). For the
high-frequency regime no clear trend is seen, with some
eigenstates being in regions of negative eigen-shear. On
the other hand, in the lower-frequency regime, in general
the eigenstates exist in regions of reduced lowest eigen-
shear (by up to 50%).

It is worth mentioning that past work has shown
that in three dimensions there exists a non-zero phonon
frequency above which the modes exhibit Anderson lo-
calization [55], and below which the states constitute
extended modes: see for example reference [56] and refer-
ences therein, and more recently reference [57]. The crit-
ical phonon frequency at which this separation occurs is
referred to as the phonon mobility edge. The extended
states with frequencies below this mobility edge have been
referred to as “Extendons” in which those with a fre-
quency less than the characteristic Boson peak frequency
are called “Propagons” and those with higher frequencies
are called “Diffusons”, two regimes that have distinctive
propagation properties: see Allen et al. [58]. In the present
work such eigen-states have been referred to as extended
states. The results of Figure 6 demonstrate that there
exists an approximate frequency threshold above which
the environment of the eigenstates has generally a com-
pressive hydrostatic pressure, an increased bulk modulus,
and strong scatter in the lowest eigen-shear. Whether or
not this frequency threshold correlates with the phonon
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Fig. 7. (Color online) The band structure of sample 0d. Both
the transverse and longitudinal acoustic modes predicted by
isotropic elasticity using the sound velocities derived from
equations (24) and (25) with the relaxed elastic constants of
Table 2 are also shown.

mobility edge frequency is an interesting topic for further
investigation and will not be considered in greater detail
in the present work.

3.2.2 Phonon band-structure

Figure 7 displays the band structure in the first Brillouin
zone along one particular simulation cell coordinate for
the low frequency Boson-peak regime for sample 0d
(Fig. 4b). Similar results are obtained when k is cho-
sen to point along orthogonal (Cartesian) directions, in-
dicating the approximate isotropy of even the small-
est sample presently considered. Also plotted are the
Brillouin-zone-folded transverse T1a, T1b and longitudinal
L1 dispersion modes predicted by isotropic elasticity using
equations (24) and (25) with the relaxed elastic constants
shown in Table 2. In Figure 7 there exist two distinct
regimes of frequencies, a lower frequency regime exhibit-
ing almost linear dispersion that is well described by the
elastic continuum picture, and at higher frequencies a den-
sity of almost flat bands that are presently referred to as
dispersionless modes. These begin at frequencies begin-
ning at approximately ΩOBP (≈1.9). Such modes, whilst
quite flat, clearly hybridize with the accoustic branchs in
the (ω, k) regions predicted by elasticity. This is most ev-
ident for the longitudinally polarized mode (at k ≈ π/L
and ω ≈ 2), but less clear for the transverse polariza-
tion (at k ≈ 0 and ω ≈ 2) region, indicating the latter
accoustic mode is strongly affected by the dispersionless
modes. That the accoustic branches extend well into the
band of dispersionless modes is better seen in Section 3.2.4
which calculates the structure factor for these up to a
wave-vector value of 4π/L. It must be emphasized that
the band-structure concept is an artefact of the finite (but
periodic cell) used in the present simulations – in the infi-
nite amorphous solid the Brillouin zone would contract
to a single point in reciprocal space and such a figure

Fig. 8. (Color online) The band structure of sample 0d colour-
coded according to (a) participation number, (b) atom-type,
(c) local Voronoi volume, and (d) coordination.

would not be possible. Indeed for larger samples, where
the Brillouin zone significantly contracts and the density
of vibrational modes increase, numerical issues arise re-
sulting in a lack of connectivity and undefined dispersion
curves. It is for this reason, the k �= 0 modes are only
calculated for the smallest sample, sample 0d.

In Figures 8 and 9 the dispersion curves have been
colour-coded according to the PNW local quantities of
the particular mode (n, k), the value of which may be in-
ferred from the neighbouring colour bar of each panel.
Figure 8a displays the band-structure colour-coded ac-
cording to the participation number of each mode. Inspec-
tion reveals that the number of atoms participating in the
eigenstates of the linear dispersion regime (below ΩOBP)
is equal to the number of atoms in the sample. Thus, as ex-
pected, the acoustic branches involve close to all atoms in
the sample. On the other hand, those dispersionless modes
close to the band-edge (at ≈ΩOBP) involve a significantly
reduced number of atoms, as already seen in the low fre-
quency part of Figure 4b. In particular, three band-edge
modes are seen to involve approximately 100 atoms and
are indicated by red arrows in Figure 8a.

Figure 8b displays the band-structure coloured accord-
ing to the PNW atom type. Since all atoms participate in
the acoustic branch, the linear dispersion regime involves
atoms of both types. However at the band-edge atoms of
type ‘2’ tend to dominate, particularly for the three ar-
rowed dispersionless modes. Figures 8c and 8d now show
respectively the band-structure coloured according to the
Voronoi volume and coordination. Again anomalies exist
at the band-edge when compared to the bulk averages of
the acoustic modes. In terms of the Voronoi volume the
arrowed dispersionless modes exist in regions of slightly
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Fig. 9. (Color online) The band structure of sample 0d colour-
coded according to local (a) energy, (b) hydrostatic pressure,
(c) bulk modulus, and (d) the lowest local eigen-shear modulus.
(b) to (d) are colour coded in terms of the fractional change
(fc) with respect to the corresponding globally averaged value.

reduced volume when compared to the average volume
per atom; however from inspection of Figure 3b these val-
ues are in the upper tail of the type ‘2’ distribution of
Voronoi volumes. On the other hand, in terms of coor-
dination, only the upper-frequency arrowed dispersionless
mode has a significantly decreased coordination.

Figure 9 shows the band-structure coloured according
to the PNW local energy, hydrostatic pressure, bulk mod-
ulus and lowest eigen-shear modulus. In terms of energy,
Figure 9a, the arrowed band-edge modes are considerably
less negative than the bulk averaged values of the acoustic
branches. Figure 9b displays the band-structure coloured
according to the local hydrostatic pressure, which is dis-
played as a fractional change with respect to the globally
averaged local value. In terms of local hydrostatic pres-
sure, the arrowed band-edge states have a PNW value that
is not so different from the bulk averaged value. However,
there do exist some other dispersionless states at slightly
higher phonon frequencies that are quite different from
the bulk value.

Figures 9c and 9d show the band-structure coloured
according to the PNW bulk modulus fraction and the
lowest eigen-shear fraction relative to their correspond-
ing globally averaged values. Here it is observed that the
band-edge dispersionless modes are in regions of reduced
moduli. The correlation is strongest for the lowest eigen-
shear modulus, where the values are significantly reduced
compared to the global value – in fact, all three arrowed
dispersionless modes exist in an environment with an av-
erage lowest eigen-shear, which is 50% less than that of
the bulk averaged value.

Fig. 10. (Color online) Participation ratio in the low frequency
regime for the three different sized samples considered in the
present work. Indicated are the predicted peaks correspond-
ing to the [100] (T1,L1), [110] (T2), [111] (T3) and [200] (T4)
acoustic branch wave-vectors. In a) the average participation
ratio derived from seven realizations of size sample 0 using
quench rate η1 is also shown.

3.2.3 Sample size dependence of the low frequency regime

How do the above results change when the simulation cell
size and number of atoms are increased? Figure 10 dis-
plays the k = 0 participation ratio for the low frequency
regime for all three samples at their corresponding slowest
quenches: (a) sample 0d, (b) sample 1c and (c) sample 2c.
Due to computational restrictions, only the lowest 350
eigenvalues and corresponding eigenvectors are calculated
for sample 2c. In Figure 10a, the average participation ra-
tio derived from seven realizations of sample 0c are also
shown to compare one quench rate across all three sample
sizes, and also to demonstrate that the participation ratio
is relatively insensitive to a particular atomic configura-
tion. Inspection of all figures reveals that with increasing
size there is a shift of modes towards lower phonon fre-
quencies and a discrete bunching of modes emerges. Such
a bunching arises due to the zone folding of the acoustic
and longitudinal modes to the k = 0 value. This becomes
more pronounced for the larger system sizes since there is
a corresponding decrease in the 1st Brillouin zone volume
and thus a greater number of folds and therefore bunches
for a given range of phonon frequencies. Precisely where
this bunching occurs can be estimated by the simple for-
mula, ωn = 2πnv/L, where v is the sound velocity of ei-
ther the transverse or longitudinal [n00] modes (Eqs. (24)
or (25)), L is the simulation cell length along the direction
of the chosen k, and n is the nth k = 0 zone fold.
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Fig. 11. (Color online) Scatter plots of participation-number-
weighted (a) atom type, (b) coordination (c) local Voronoi vol-
ume, (d) local hydrostatic pressure, (e) local bulk modulus and
(f) lowest eigen-shear as a function of corresponding phonon
eigen-frequency for sample 2c. Data is colour coded accord-
ing to the participation ratio for each corresponding mode, see
colour bar.

A similar estimate can be made for the [nn0] and [nnn]
modes for n = 1. The resulting predictions are marked in
Figure 10 by red arrows for both the transverse and lon-
gitudinal acoustic branches. It is found that such a calcu-
lation gives a quite good estimate for the lowest non-zero
frequency, with n = 1 for the transverse mode – this is
particularly the case for the largest sample (sample 2c),
Figure 10c, where the location of the [100], [110], [111] and
[200] transverse modes, and the [100] longitudinal mode
are well predicted. Moreover for this sample, the number
of states within each bunch corresponds to the expected
multiplicity of the modes, where for the [n00] transverse
mode it is twelve, for the [nn0] transverse mode it is twenty
four, and for the [nnn] transverse mode it is sixteen. For
sample 1c, the [100] mode had the correct multiplicity.
It was however not possible to reliably count the higher
wave-vector modes in sample 1c (and also all modes in
sample 0d) due to strong mixing with additional disper-
sionless modes.

Figure 11 now shows the PNW local atomic properties
for the low frequency (Boson-peak) regime of sample 2c.
The data is colour-coded according to the corresponding
participation ratio value; points having a participation

ratio greater than 0.25 are coloured grey. Inspection of
Figures 11a to d reveal no clear trend for those modes
with a significantly reduced participation ratio. However,
this is not the case for Figures 11e and 11f, which demon-
strate a clear trend that almost all states with a partici-
pation ratio less than 0.25 exist in regions with a reduced
bulk modulus and lowest eigen-shear modulus irrespective
of the type of atom. This is particularly the case for those
states having a very small participation ratio.

3.2.4 Transverse and longitudinal structure factors

The nature and extent of the acoustic branches for fre-
quencies above the band-edge (>ΩOBP) is difficult to de-
termine due to the high density of dispersionless modes.
Indeed the first Brillouin zone fold of the longitudi-
nal mode cannot easily be identified via only the band-
structure in Figures 8 and 9.

Further insight into the acoustic branches seen in Fig-
ures 8 and 9 may be gained via the calculation of the
corresponding dynamical structure factors: equations (12)
and (13). The upper two panels of Figure 12 display the
transverse and longitudinal dynamical structure factors
for sample 0d, for values of k spanning the first four
Brillouin zones along the same reciprocal space direction
as that used in Figures 8 and 9. In these figures only the
interference terms of equations (12) and (13) are plotted;
that is, the normalization factor ω2/k2 is omitted. Inspec-
tion of these figures, which directly reveal the dispersion
properties of transverse and longitudinal sound (giving a
result that is not so dependent on the (artificial) Brillouin
zone boundaries), demonstrates that the transverse modes
strongly broaden at the onset of the dispersionless modes,
whereas the longitudinal mode is only weakly affected by
their presence extending deeper into the band of disper-
sionless states. The two lower panels display the same
data, but are now coloured using a logarithmic scale to
emphasize the role of the underlying band-structure. The
transverse and longitudinal linear dispersion curves pre-
dicted by elasticity are also shown as dashed lines.

The experimental (transverse) structure factor ex-
hibits important differences to those presently simulated,
where gradual broadening with increasing wave vector
is observed in experiment as opposed to the abrupt oc-
curence of broadening seen in Figure 12 at a frequency
corresponding to the onset of the dispersionless modes.
Indeed, experimentally for the transverse acoustic branch
there are regimes of different power-law dependence for
the structure factor width. Due to the finite periodic
length of the used simulation cell, there exists a rela-
tively short length-scale above which the system is ho-
mogeneous, with longer wavelengths than this seeing an
effective elastic continuum and therefore perfect linear dis-
persion without broadening. This effective elastic medium
is characterized by the relaxed elastic constants of the
conventional cell calculated in Section 3.1, and the cor-
responding linear dispersion relation plotted in Figure 8a.
Thus, as with a k = 0 calculation, calculations at k �= 0
are unable to capture correctly the scattering of sound in
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Fig. 12. (Color online) The upper two panels display the struc-
ture factors of the transverse and longitudinal acoustic modes.
The two lower panels display the same data using a logarithmic
shading scheme to emphasize the underlying band structure.
In the lower panels, the linear dispersion relations using the
sound velocities derived from equations (24) and (25) with the
relaxed elastic constants of Table 2 are shown as dashed lines.

a truly bulk amorphous solid when the wavelengths are
larger than that of simulation cell size. It is only when
the wavelength is smaller than the simulation-cell size and
the corresponding frequency is at and beyond that of the
dispersionless modes, that explicit broadening occurs due
to the atomic scale disorder. In this regime the broading
of the transverse and longitudinal branches increases with
increasing wave-vector – see the lower panels of Figure 12.

4 Discussion

The previous simulation work of Schober and
Oligschleger [16] has shown that for the k = 0 modes, the
low frequency eigenstates are a mixture of propagating
acoustic modes and localized vibrational modes. These
states are referred to as quasi-local states since by virtue
of their propagating component, the degree of localization
is sample-size dependent and therefore not truly localized
as is the case for the high-frequency modes seen in
Figure 4. In reference [16] such a mixing was established
by developing a numerical de-mixing procedure to extract
from their eigenstates both a propagating and a localized
component. Such a mixing of propagating acoustic and
localized modes occurs, in part, because their correspond-
ing characteristic frequencies are close in value, resulting
in a strong interaction. It is such quasi-local eigen-states
that have been observed in the low frequency regime
of Figures 4 to 11 of Section 3, and it is these that are
responsible for the low frequency enhancement of the

vibrational density of states seen in Figure 4b referred to
as the Boson peak.

Rather than performing such a de-mixing procedure,
the present work has exploited the property that occurs
when two states are less close in frequency, coupling be-
tween them is reduced, and the resulting eigenstates can
sometimes have either a strongly propagating or strongly
localized component. Such behaviour usually occurs at
band-edges, where due to finite-size constraints, propa-
gating modes are unable to exist within certain frequency
intervals. This has been the primary advantage of calculat-
ing the k �= 0 modes, since away from both the Brillouin
zone centre and the first Brillouin zone edge, a low fre-
quency band-edge dispersionless state will interact less
strongly with the acoustic branches. This is best seen in
Figures 8 and 9, where those dispersionless modes at the
band-edge (ΩOBP), and away from the zone centre and
Brillouin zone edge involve a significantly reduced num-
ber of atoms. For the case of the largest sample, sample 2,
where for the present work no k �= 0 data has been calcu-
lated, the band-edge effect is still well evident, since many
of those states with smaller participation numbers exist
at the edge of the frequency bunches seen in Figures 10
and 11. Indeed this k = 0 effect is also seen in the partici-
pation numbers of sample 0 and sample 1 (Fig. 10), where
phonon eigenstates on the low frequency side of the pre-
dicted folded acoustic branch frequency (ω1 in Sect. 3.2.3)
involve a reduced number of atoms.

These trends may be observed by direct inspection of
the spatial structure of the band-edge eigen-states. Fig-
ure 13 displays the spatial structure of several phonon
eigen-states from sample 0d. In particular, they are those
eigen-states with the twelve lowest phonon frequencies at
|k| = π/(2L): the mid-way point of the band-structure
shown in Figures 8 and 9. To visualize an eigenstate, each
atom is coloured according to a number between zero
and unity, which represents the magnitude of the local
atomic polarization divided by the maximum value of the
corresponding eigen-state. The local atomic polarization
component, ν, of atom i and eigen-state n is given by
uν

j,n of equation (8). Thus the atomic colouring indicates
|uj,n|/|uj,n|max for each atom. Hence an eigen-state which
is equally distributed on all atoms will result in all atoms
having a colouring equal to unity, whereas an eigenstate lo-
calized entirely on one atom will have a colouring equal to
unity for that atom with all other atoms having a colour-
ing equal to zero. The actual colouring scheme is according
to the colour-bar shown at the bottom left-hand corner of
Figure 13j. With the aid of Figure 8a, the first two eigen-
states (ordered in terms of ascending phonon frequency)
at the mid-point (|k| = π/2L) constitute the two trans-
verse acoustic branches: Figures 13a and 13b. Inspection
of these figures reveals that these eigenstates are indeed
de-localized over all atoms within the sample. However,
closer inspection reveals that it is not entirely homoge-
neous: there are a number of distinctly white atoms in
the figures. The third eigenstate corresponds to the sin-
gle longitudinal mode and is shown in Figure 13c. Again
all atoms contribute to this eigenstate, however a certain
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Fig. 13. (Color online) Atomic visualization of the eigenstates with the 12 lowest phonon eigen-frequencies at |k| = π/2L for
sample 0d. Atoms are coloured according to the magnitude of the local polarization vector divided by the maximum magnitude
for the corresponding eigen-state (see inset of (j)).

degree of heterogeneity is apparent. The heterogeneity
seen in the accoustic branches relfects the variation in
the local moduli, as evidenced by the relaxed bulk elastic
moduli (Tab. 2) that describe well the linear dispersion of
these modes.

The next two eigenstates, Figures 13d and 13e, corre-
spond again to the two transverse modes which have been
folded into the first Brillouin zone. Whilst these acoustic
modes still involve all atoms within the sample, the de-
gree of heterogeneity has clearly increased, where now a
cluster of atoms begin to dominate. For each of the two
transverse modes, the regions where such clusters of atoms

occur are not so dissimilar. The next two eigen-states
(Figs. 13f and 13g) are clearly confined to a few atoms.
Indeed, Figure 8a reveals that these two states correspond
to the band-edge states close to ΩOBP and are indicated
(in Fig. 8a) via the two lower-most red arrows. The next
five eigen-states shown in Figures 13h to 13l display modes
that are strongly heterogeneous but distributed over the
entire sample. The eigen-state visualized in Figure 13j is
well confined to a few atoms and is the eigen-state indi-
cated by the upper-most red arrow in Figure 8a. Overall,
Figure 13 gives examples of the mixing of propagating
modes with that of non-eigenstate localized vibrational
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modes, since the quasi-local modes seen in Figures 13f, 13g
and 13j exist with a varying level of contribution in all the
states shown.

Figure 2e demonstrates that there exist regions within
the sample where the local eigen-shear is close to zero or
even negative. A negative local eigen-shear formally im-
plies that upon performing the appropriate uniform dis-
tortion on only those atomic bonds contributing to the
local modulus, a reduction in the corresponding local en-
ergy of the volume element is seen. Thus, when isolated
the atomic arrangement is unstable. However this does
not necessarily entail that the local environment embed-
ded within the solid is unstable since the surrounding
atoms (not all of which contribute to the particular nega-
tive eigen-shear) would need to accommodate the distor-
tion for the instability to grow. If the surrounding ma-
trix is stable with respect to this distortion the net-effect
of a local negative eigen-shear would at most involve an
effective local softening for the particular distortion in
that region. This could systematically be investigated by
coarse-graining the volume partitioning, as was done in
reference [47].

The picture that therefore emerges from the present
work is that the spatial extent of the quasi-localized modes
is influenced mainly by the eigen-shear modulus landscape
of the material. In particular, such modes tend to exist in
regions of reduced eigen-shear modulus. It is therefore ex-
pected that the non-eigenstate localized vibrational modes
will be of predominantly transverse character. To what ex-
tent a particular spatial region of reduced eigen-shear will
couple to a propagating mode will depend not only on the
closeness of their characteristic vibrational frequencies,
but also on whether the corresponding shear distortion
associated with the eigen-shear mode is compatible with
that of the propagating mode’s polarization. It is there-
fore unsurprising that it is the transverse acoustic branch
that is most sensitive to the presence of such modes, as
seen in the structure factor calculation of Section 3.2.4,
Figure 12, and in the previous work of reference [23]. In-
deed at the most simple level of local approximation, via
equations (24) to (25), the transverse branches only couple
to the appropriate local elastic shear moduli, whereas the
longitudinal branch couple to both shear and dilatational
modes. Since variations in the local bulk modulus are less
than that of the local elastic shear moduli, this somewhat
dilutes the effect on the longitudinal acoustic branch, of a
landscape of strongly varying local elastic shear moduli.

How might the sample size of an atomistic simulation
be related to this scenario? With increasing system size,
there will be an increased possibility that larger spatially
connected regions of reduced shear moduli will occur, with
correspondingly lower characteristic vibrational frequen-
cies. Such modes are then able to couple with the appro-
priate lower-frequency (and therefore longer wavelength)
propagating modes and the band-edge, so well defined in
the present work by ΩOBP, will become less sharp. In-
deed, in the present work, the acoustic branches are ini-
tially perfectly linear (apart from Brillouin-zone bound-
ary effects) and are only non-negligibly perturbed when

their vibrational frequency is close to or above ΩOBP. For
systems much larger than considered presently, it is envi-
sioned that the existence of multiple and extended regions
of reduced shear modulus would manifest itself as a far
less abrupt modification of the dispersion relations of the
acoustic branches, as seen in experiment and finite molec-
ular dynamics simulations of large two-dimensional sys-
tems [23], from which the continuous Bose-peak structure
of the VDOS emerges at a characteristic frequency that
is now known to correspond to the Ioffe-Regel frequency.
This is the frequency at which the scattering length char-
acterizing the interaction between the propagating mode
and its environment is equal to the wavelength of the prop-
agating mode.

For the current range of simulation cell sizes consid-
ered, the upper limit of the spatial extent of such localized
(non-eigenstate) vibrational modes is set primarily by the
size of the simulation cell. Figures 13f, 13g and 13j indi-
cate that several tens of atoms would be involved in the
underlying localized vibrational modes. In the larger sam-
ples, sample 1 and sample 2, such atom numbers can be
somewhat larger as revealed by the participation number
of Figure 10. For much larger simulation cell sizes (cur-
rently computationally intractable) the upper limit for the
spatial extent of such modes might be related to the spa-
tial extent of a connected region of low eigen-shear elastic
moduli. The size of such regions is expected to be limited
by issues of local mechanical instability, which leads to a
thermal and/or stress-driven local transformation relax-
ing the structure to a locally stiffer environment. Indeed,
for the samples produced at the larger quench rates, sam-
ple 0a and sample 0b, a number of eigen-frequencies well
below ωOBP were seen, corresponding to well-localized dis-
persionless eigen-states. At the slower quench rates these
modes disappear producing the gap of the magnitude seen
in, for example, sample 0c and sample 0d (Fig. 10a). Inter-
estingly, these additional modes often occur at a frequency
corresponding to the first intersection of the transverse
branches with the Brillouin zone edge at |k| = π/L.

The eigen-frequencies and corresponding eigen-states
arise from the diagonalization of the eigen-value equation,
equation (8). Thus the structure of the Hessian deter-
mines the vibrational modes of the system and the ques-
tion arises, what aspect of the Hessian in the present work
is responsible for the Boson-peak behaviour? By resetting
all the masses to unity, the so-called mass disorder com-
ponent due to the effective randomly distributed atomic
masses is removed. In doing so, and subsequently diago-
nalizing the Hessian, it was found that there is little effect
on the existing quasi-local vibrational modes, suggesting
that the origin of their existence lies in the explicit disor-
dered structure of the Hessian determined from the binary
LJ interaction.

Figure 14a plots the distribution of the trace of the on-
site 3 × 3 block diagonals of the Hessian for both atom-
types in units of ε/σ2, indicating that there are no on-
site negative terms and that the distributions for both
atom-types are quite similar. Figure 14b now plots the
three distributions of the trace of the off-diagonal Hessian
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Fig. 14. (Color online) (a) Distribution of the trace of the
on-site Hessian resolved for atom-type, (b) distribution of the
trace of the off-diagonal Hessian as a function of radial distance
in which data points are colour-coded according to frequency
of occurrence, (c) participation number for a normal and short-
range Hessian and (d) its corresponding VDOS normalized to
three. The data is derived for sample 0d.

blocks between atoms of type ‘1’ and ‘1’, type ‘2’ and ‘2’
and types ‘1’ and ‘2’ as a function of radial distance be-
tween the atoms. Thus Figure 14b displays three curves
as a function of radial distance, which are colour-coded
according to the frequency of occurrence for that particu-
lar radius, where red represents the maximum value of the
distribution and blue its minimum; for intermediate values
the colour-bar to the right of Figure 14b can be consulted.
Inspection of Figure 14b reveals that for each bond type,
there exists a large peak in the distribution in the first
neighbour shell for r < 1.2σ and a secondary weaker and
broader peak in the distribution for r > 1.4σ. Indeed,
the distribution for such off-diagonal terms as a function
of radial distance is nothing more than the type resolved
pair-distribution function seen in Figure 3a. Moreover, the
three curves seen in Figure 14b are simply the polarization
traces of equation (5). The negative values of the trace of
the off-diagonal blocks seen for r < 1.2σ correspond to ef-
fective positive spring constants, whereas the trace of the
off-diagonal blocks seen for r > 1.4σ would correspond
to longer-range effective spring constants, which have a
negative sign.

How do these longer-range off-diagonal components of
the Hessian affect the low frequency vibrational prop-
erties of the system? This may be investigated by ex-
cluding these long range off-diagonal components beyond
(say) r > 1.2σ, and diagonalising the resulting modified
Hessian. It is noted that the original atomistic structure
(as obtained when using a rc = 2.5σ) is held fixed, that is
there is no relaxation performed using the corresponding

Table 3. Table listing the global elastic stiffness moduli (in
units of ε/σ3

11) for sample 0d for two Lennard-Jones cut-off
radii. Shown are the Bulk modulus and isotropic shear modulus
and also the five Kelvin eigenshears. For a perfectly isotropic
medium, all five Kelvin eigen-shears would equal 2μ.

Modulus rc = 2.5σ11 rc = 1.2σ11

K 78.96 88.24
μ 48.18 50.46
μ1 91.89 96.58
μ2 92.16 96.89
μ3 95.13 99.72
μ4 96.24 100.83
μ4 98.34 102.8

truncated interaction potential. Figure 14c displays the
resulting participation number for sample 0d. In this fig-
ure, the participation number distribution for the original
Hessian is also shown for comparison. The inset shows a
blow-up of the low frequency regime. It is observed that
for the truncated Hessian the low frequency modes con-
taining a reduced number of atoms are entirely absent. By
binning the resulting distribution of phonon frequencies,
the corresponding truncated VDOS is obtained and com-
pared to the original shown in Figure 4a, and it is seen
that there is a reduction in the number of low frequency
states when compared to the original. Importantly, the
truncation of the Hessian does not markedly effect the
intermediate to higher phonon-frequency regime, nor the
linear dispersion of the low frequency acoustic branches.
The latter is due the global elastic stiffness moduli not
significantly changing apart from an overall stiffening; see
Table 3, which lists the global elastic moduli calculated
using equation (15) for both inter-atomic potential cut-
offs.

The above observations indicate that for the present
work the origin of the quasi-local vibrational modes, and
therefore the Boson-peak structure of the VDOS, does not
lie in the mass disorder, the diagonal disorder, nor the
short-range off-diagonal disorder of the Hessian. Rather,
its origin lies in the long-range off-diagonal Hessian disor-
der which, by virtue of a decreasing negative LJ interac-
tion with increasing distance, results in a distribution of
long-range negative effective spring constants. Although
the magnitude of these negative spring constants is small
when compared to the short-range positive spring con-
stants, their presence has clearly a non-negligible effect.
This is most likely due to the large number of inter-atomic
distances available at this regime of radii. Moreover, even
though such long-range components contribute to only a
minor softening of the bulk elastic moduli (Tab. 3), de-
tailed inspection of the change in the eigen-shear moduli
distribution (not shown) reveals that the tail of negative
eigen-shear moduli seen for atoms of type ‘2’ is almost en-
tirely absent upon their removal, due to the general shift
of all the moduli (of both atom-types) to higher stiffness
values.

Thus, when using a potential of the form of equa-
tion (1), the structural origin of the quasi-local vibrational
modes lies in the disorder associated with a length scale
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beyond that of the coordination shell environment. This
conclusion is expected to be applicable to more general
models of pairwise/dispersive cohesion, since to stabilize
a material system, any effective pair-wise potential with
a short-range repulsive character must have a long-range
form that is attractive, the latter of which will naturally
lead to negative long-range effective spring constants. Al-
though this property might be a sufficient condition, it
is clearly not a necessary condition since purely repulsive
potentials in which the atomic system is stabilized via an
external compressive stress also admit such low frequency
modes [13,14]. In such soft pair-wise systems it is expected
that the soft nearest-neighbour spring constants will be re-
sponsible for the anomolous low frequency modes, leading
also to spatial regions within the glass that have spring
constants and eigen-shear moduli that are negative.

Finally, as in experiments [59,60], the present work
finds that higher cooling rates yield an increase in atomic
volume, as well as a decrease in shear modulus, which can
be understood as an increase in structural defect concen-
tration due to reduced structural relaxation in metallic
glasses when being quenched quickly. It has further been
reported in the experimental literature that the Poisson
ratio, which provides a fundamental connection to the
malleability of glasses [61], increases for larger cooling
rates [60–62]; a trend that is not clearly distinguishable
in the present simulation work when equation (15) is used
to calculate the global elastic moduli, nor for the relaxed
moduli listed in Table 2. Given that a locally reduced
atomic density is widely believed to control the deforma-
tion of metallic glasses [63], it is interesting to note that
the quasi-localized low frequency modes correlate with
such a local atomic environment of larger volume. Since a
structural state of increased free volume (globally a higher
concentration of structural defects) more readily can ac-
commodate local shear, such sites are generally believed
to have a low energy barrier for a cooperative inelastic
transition, of which the size again is a function of Poisson
ratio [64].

Even though no plastic straining was performed within
the present work, the fact that the quasi-localized low fre-
quency modes manifest themselves at sites of strongly re-
duced local elastic shear moduli and increased free vol-
ume, poses the interesting question to what extent those
sites identify local atomic regions prone to firstly gener-
ate plastic transformations? This would mean that the
vibrational eigen-modes causing the Boson-peak anomaly
could potentially be correlated with atomic sites that are
responsible for mediation of strain in a disordered glassy
structure, a fundamental question that forms the basis for
the continuation of this work.

Work suggesting such a link has been done by a variety
of groups. The work of [21] found that for athermal/high
stress deformation simulations irreverible atomic rear-
rangements were quite localized and therefore did not cor-
relate in an obvious manner with those extended regions
in which strong non-affine elastic displacements occured.
It was suggested that a more likely pre-cursor signature
of plasticity would be the more localized regions of nega-

tive shear moduli found by Yoshimoto et al. [65]. Indeed,
Mayr [47] has found that as the temperature approaches
the glass transition temperature of stress-free model glass
samples, thermally activated, more extended irreversible
structural transtitions do occur that are spatially cor-
related with regions of negative local eigen-shear mod-
ulus. That such “shear transformation zones” are more
extended at low stresses was also confirmed by the applica-
tion of potential energy landscape exploration alogirthms
to mode glass systems [66,67]. That a thermal component
might play a fundamental role has also been suggested
in atomistic simulation work in model super-cooled liq-
uids [68], in which spatially fluctuating local Debye-Waller
factors might be an indicator of whether or not a region
is likely to undergoe significant displacement. Indeed, in
the condensed-phase regime of an amorphous solid, such
thermal quantities, are intimately linked to the vibrational
properties studied here.

5 Concluding remarks

In conclusion, the present work reports on an investigation
of the vibrational properties of model binary structural
glasses prepared by a molecular dynamics quenching pro-
cedure. By diagonalizing the resulting Hessian of the zero
Kelvin structures to obtain the normal modes of the sys-
tem, the harmonic vibrational properties could be investi-
gated in detail and related to the atomic structure of the
computer generated samples. While the high-frequency
localized modes were investigated also, the emphasis of
this work lies in a study of the low frequency properties,
which manifest themselves as the experimentally acces-
sible Boson-peak anomaly in the vibrational density of
states. The quasi-localized eigen-modes that underlie this
enhancement of the low frequency vibrational density of
states were investigated in detail via their participation-
number-weighted local atomic property values and it was
found that such normal modes are strongly biased to re-
gions of the atomic structure that are characterized by
considerably reduced local elastic shear moduli. A lesser
correlation was found in terms of regions of increased lo-
cal free volume, local tensile hydrostatic pressures, and
reduced local elastic bulk moduli. By inspection of the
Hessian structure, it was found that it is the long-range
off-diagonal disorder structure that is responsible for the
quasi-localized modes. Such long-range off-diagonal struc-
ture is characterized by a distribution of negative effective
spring constants whose existence is the direct result of the
long-range attractive nature of the LJ inter-atomic poten-
tial employed in the present simulations. Since in general
a pair-wise interaction is required to be attractive in the
long-range, such a finding might be quite general and play
a defining role in the claimed universality of the Boson-
peak form. Such a result certainly motivates further work
in the field of simplified random-matrix models of lattice
disorder, where now distributions of off-diagonal disorder
compatible with the constraints of a pair-wise interaction
may be investigated.
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