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ABSTRACT

Despite significant atomic-scale heterogeneity, bulk metallic glasses well below their glass
transition temperature exhibit a surprisingly robust elastic regime and a sharp elastic-to-plastic
transition with a yield stress that depends approximately linearly on temperature. The present
work attempts to understand these features within the framework of thermally activated plasticity.
The presented statistical thermal activation model, in which the number of available structural
transformations scales exponentially with system size, results in two distinct temperature regimes of
deformation. At temperatures close to the glass transition temperature thermally activated Newtonian
plastic flow emerges, whilst at lower temperatures the deformation properties fundamentally change
due to the eventual kinetic freezing of the available structural transformations. In this regime, a linear
temperature dependence emerges for the stress which characterises the elastic to plastic transition.
For both regimes the transition to macroscopic plastic flow corresponds to a transition from a barrier
energy dominated to a barrier entropy dominated statistics. The work concludes by discussing the
possible influence that kinetic freezing might have on the low temperature heterogeneous and high
temperature homogeneous plasticity of bulk metallic glasses.

INTRODUCTION

The deformation properties of bulk metallic glasses (BMGs) are broadly characterised by two
temperature regimes [1]. In the high temperature regime, close to the glass transition temperature,
BMGs deform homogeneously with the strain rate properties being reasonably well understood by
thermally activated Newtonian plastic flow. At lower temperatures, plasticity becomes heterogeneous
leading to low ductility in tension and shear banding in compression. In this regime of temperatures
both athermal [2] and thermal [3] theories of plasticity have been proposed. Experimentally the yield
stress has a decreasing, approximately linear, dependence on stress that is insensitive to material
type when normalised with respect to a representative shear modulus and the glass transition
temperature [3]. As the temperature approaches (and depending to the strain rate) passes, Tg,
there is also an abrupt drop in the yield stress as the plasticity transits to the high temperature
homogeneous deformation mode [4].

The present work outlines an attempt to understand the entire temperature range of plasticity
via the thermal activation hypothesis and a distribution of relevant energy barriers. As with
viscosity, a characteristic time scale of irreversible structural transformation activity is considered,
τp, where below the glass transition temperature its inverse is seen as a plastic rate. Since in the low
temperature regime, the elastic regime is robust and yield is a well defined and reproducible material
property [5], studying the resulting temperature and stress dependence of [τp]

−1 can give insight into
the transition from elasticity to plasticity. At higher temperatures, where the transition to plasticity
is not so well defined, [τp]

−1 will give a more qualitative insight into the stress scale of the early stages
of deformation.
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THEORY

The reproducibility of the yield stress at low temperatures suggests BMG failure is an intrinsic
property of the material [5] and at a large enough length scale BMGs may be considered structurally
homogeneous. It is the calculation of [τp]

−1 at this length scale that is of current interest. For this
length scale to be homogeneous, a sufficient amount of self-averaging must occur with respect to a
shorter heterogeneous length scale. Thus

[τp]
−1 =

N ′

∑

n=1

[τp0,n]
−1 (T ), (1)

where [τp0,n]
−1 (T ) is the particular plastic rate for the nth heterogeneous volume element and N ′

is the number of such heterogeneous volume elements leading to a well-converged self-averaged
[τp0]

−1 (T ). If the associated heterogeneity volume contains N atoms, then the homogeneous volume
element contains N ′ ×N atoms.

Under the assumption of thermally activated plasticity, the plastic rate associated with one
particular heterogeneity volume may be written as a linear sum of the M = M(N) thermally active
transition rates available to that volume element:

[τp0,n]
−1 (T ) =

M
∑

i=1

[τp0,ni]
−1 (T ) exp

(

−
Ep0,ni

kBT

)

, (2)

where [τp0,ni]
−1 (T ) and Ep0,ni are the attempt rate and barrier energy for the ith irreversible structural

transformation within the nth heterogeneous volume element.
In terms of the underlying potential energy landscape (PEL), the simple (first order) expression

of eqn. 2 is only valid for thermally activated processes that do not multiply recross their energy
barrier. This naturally leads to a coarse graining of the PEL, in which the barriers and (now diffusive)
prefactors entering into eqn. 2 underly the collective microscopic activity that results in a lasting
escape from a characteristic energy valley. By analogy to the under cooled liquid PEL framework [6, 7]
where two distinct time scales occur — the “slow” α-relaxation and “fast” microscopic β-relaxation
modes — the self-averaging of eqn. 1 into which eqn. 2 has been subsituted, is found to reduce to

[τp0]
−1 = [τp00]

−1 exp

(

−
Ep00

kBT

)

M

〈

exp

(

−
Ep0

kBT

)〉

. (3)

Eqn. 3 consists of a diffusive attempt rate with a simple Arrhenius temperature dependence,
representing the mediating β mode relaxation dynamics, and a thermal factor whose temperature
dependence will be derived from the statistical properties of the α-relaxation mode coarse grained
PEL [8]. Identifying, the relevant energy barriers with those of the α-relaxation mode barrier energy
landscape is motivated by the known high temperature thermally activated homogeneous Newtonian
plastic flow regime of BMGs, in which the corresponding activation energy (derived from strain rate
sensitivity experiments) correlates strongly with the characteristic α-mode energy barrier derived
from the fragility measurements at Tg for a wide range of BMGs [9].

The remaining average in eqn. 3 may be performed via an integration over a distribution of
α-relaxation mode barrier energies:

M

〈

exp

(

−
E

kBT

)〉

= M

∫

∞

0

dE P (E) exp

(

−
E

kBT

)

, (4)



where the form of P (E) is motivated by the relation between M and N .
For the number of minima in a glassy PEL, Stillinger developed the concept of inherent

structures (the associated atomic configurations) whose number was found to scale exponentially
with atom number [10]. This relation can also be extended to the case of the total number of
stationary points [11, 12]. Thus, presently, M = exp (αN) where α can be viewed as a bulk material
parameter, the saddle-point enumeration number characterising the total number of available
structural transformations per atom. Such a form has also been assumed in early thermodynamical
models of viscosity [13, 14]. As with the energy dependence of the number of inherent structures [15],
the barrier energy dependence of α (the saddle-point enumeration function) has been found to be
a quadratic function [11] suggesting that the appropriate starting point for P (E) for a finite N , is
a Gaussian distribution with an extensive mean EN and an extensive standard deviation squared

(δE)2 =
(

δE
√
N
)2

.

For a Gaussian, the integral in eqn. 4 can be evaluated, giving

M

〈

exp

(

−
E

kBT

)〉

≈ exp

(

N

[

α−
E

kBT
+

1

2

(

δE

kBT

)2
])

. (5)

For a sufficiently large value of N , the above (and also [τp]
−1 via eqn. 3) will have a negligible value

if the factor within the argument of the exponential is negative and a large value when it is positive.
Assuming E, δE and α are fixed material parameters, the critical temperature at which this occurs is

Tc =
E

kB

(

δE/E
)2

1−
√

1− 2
(

δE/E
)2

α
. (6)

The critical temperature is thus independent of N and therefore the size of the heterogeneous
volume element. For T < Tc, eqns. 5 and 3 become negligible, whereas for T > Tc they becomes
exponentially large. Thus Tc defines the temperature at which there is a fundamental change in the
degree of plasticity and will be referred to as the plastic transition temperature. The sharpness of
this transition is determined by the value of N .

What is the nature of this transition? Eqn. 5 can be written as

M

〈

exp

(

−
E

kBT

)〉

= exp

(

−
NEapp(T )

kBT

)

× exp

(

N

[

α−
1

2

(

δE

kBT

)2
])

, (7)

where the apparent barrier energy, Eapp(T ) = E− δE
2
/ (kBT ), is the first moment of the distribution

proportional to P (E) exp(E/kBT ). The second term in eqn. 7 is interpreted as the apparent number
of available structural transformations. At temperatures, T < Tc, the smallness of the thermal factor
involving Eapp(T ) dominates and eqn. 5 becomes negligible, whereas at temperatures, T > Tc, the
exponential largeness of the apparent number of available structural transformations dominates and
eqn. 7 becomes non-negligible. The transition temperature, Tc, is defined when both these terms are
comparable. Since the left hand side of eqn. 5 has the mathematical structure of an average partition
function, an analogy to thermodynamics can be made allowing the argument of the exponential in
eqn. 5 to be interpreted as a free barrier energy, and thus Tc as the temperature at which the barrier
statistics changes from an internal barrier energy to a entropy barrier dominated regime [16].

Is eqn. 7 always valid? Upon sufficient decrease of temperature, the argument of the last term
in eqn. 7, will become zero resulting in the apparent number of available structural transformations
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Figure 1: a) Dependence of plastic transition and freezing temperature on applied load for a) a
Gaussian and b) a modified Gaussian with which gives a zero probability at zero barrier energy.
Model parameters are derived from the material properties of Viteroly-1.

equalling one. This occurs at temperature Tf = δE/
√
2α and therefore at an apparent barrier energy

Eapp(Tf) = E −
√
2αδE. Below this temperature, eqn. 5 is no longer applicable with the barrier

statistics fundamentally changing to that of the extreme value centred around Eapp(Tf). In the
thermodynamic analogy, the system “freezes” into one characteristic available barrier energy [16].
Freezing is a phenomenon that occurs in spin-glasses and was first derived for the so-called random
energy model of Derrida [17] and is intimately connected to extreme value statistics and the replica
symmetry breaking method for use in quenced averages [18]. For T < Tf , eqn. 5 becomes a constant
equal to exp

(

−Eapp(Tf)/ (kBTf)
)

. This has important consequences upon the application of a load
and will be referred to as kinetic freezing.

RESULTS

The application of an external stress will affect the distribution of barrier energies via a
change in its first and second moments, E and/or δE. Since the application of an external load
strongly breaks the symmetry of the system, it is assumed that the energy barriers will with equal
probability either increase or decrease, broadening P (E). To leading order this will be represented
as δE(σ) = E(0)

(

1 + (σ/σ0)
2
)

where (presently) σ is a simple shear. This will result in stress
dependent plastic transition Tc(σ) and freezing Tf(σ) temperatures.

Fig. 1a displays the resulting plastic transition and freezing temperatures as a function of σ
for a choice of parameters E, δE, N and σ0. Inspection of this figure reveals that in the vicinity
of Tc(0), the stress required for the plastic transition to occur rapidly increases upon lowering the
temperature, eventually saturating to a value at which freezing occurs: Tc(σf) = Tf(σf). At this
freezing stress/temperature, Eapp(Tf) = 0, and eqn. 7 equals unity resulting in a stress independent
plastic rate and the inapplicability of the Gaussian model for temperatures less than Tf . This is an
artifact of the Gaussian distribution which does not limit to zero at zero barrier energy.

The parameters E, δE, N used in fig. 1 may be uniquely determined as a function of α by
recognising 1) at zero-load, the plastic transition, Tc, will be in the vicinity of the glass transition
temperature and the apparent barrier energy at this temperature is related to the kinetic fragility,



and 2) the emergence of kinetic freezing will correspond to the onset of a distinct low temperature
deformation regime. The parameter σ0 can be chosen independently and sets the scale of the load
axis. In fig. 1 it chosen so that at kinetic freezing, the stress is equal to 0.02G where G is some
representative shear modulus. The parameter values used in fig. 1 are those for Viteroly-1 [1, 9].
When doing this, such curves become independent of α.

To modify the Gaussian distribution in a way that has the correct limit P (E → 0) → 0, the
argument within the exponential is changed from (E −NE)/δE to (g(E)−NE)δE, where presently
g(E) = E − (aN)2/E — a form which ensures an extensive apparent barrier energy. Thus an
additional parameter, a, is required. Such a modification still facilitates an analytical solution to
the integral of eqn. 4. Fig. 1b displays the resulting critical and freezing temperatures as a function
of applied load using the same parameters as in fig. 1a, revealing the avoidance of kinetic freezing
and a distinct low temperature deformation regime that is approximately linear. The value of a sets
the gradient of this linear regime where decreasing its value limits to plateau at σf . At very low
temperatures the plastic transition stress rapidly increases eventually diverging at vanishingly small
temperatures — the athermal limit where the thermal activation hypothesis central to the present
model breaks down.

DISCUSSION AND CONCLUDING REMARKS

Thus far, only the temperature dependence of eqn. 4 has been taken into account when
determining the plastic transition temperature Tc. The actual plastic rate, given in eqn. 3, has a
prefactor with the parameters [τp00]

−1 and Ep00 which characterise the underlying microscopic (β-
mode) structural transformations that mediate the α-relaxation processes. Moreover, for application
to a deformation at a particular strain rate, the plastic transition criterion developed from eqn. 5
must be replaced with the condition τexp× [τp]

−1 (Tc) ≃ 1, that is, when the plastic rate is comparable
to the experimental timescale τexp (∝ 1/ε̇2) of the deformation experiment. It is straight forward
to show that these three additional parameters affect the plastic transition temperature, Tc via the
simple renormalisation: E → E +Ep00/N and α → α+ ln (τexp/τp00) /N . Because of the logarithmic
dependence on τExp/τp00, the values of [τp00]

−1 and τexp need only be known to order of magnitude
accuracy.

The derived stress versus transition temperature reproduces well the experimentally observed
universal behaviour of yield/peak flow stress versus temperature at low temperature and also the
rapid drop in peak flow stress seen in the vicinity of Tg [1, 3, 9, 4]. That the curves in fig. 1 are
independent of α suggests an insensitivity of yield to the local atomic structure characterized by α, a
possible origin of the experimentally observed universal behaviour at low temperature. For the BMG,
Viteroly-1, N can be typically several thousands of atoms corresponding to a heterogeneous length
scale in the nano-meter regime, and in part, to a sharp transition from elastic to plastic deformation
behaviour.

Kinetic freezing corresponds to a statistics in which many heterogeneous volumes cannot deform
at the average rate, suggesting a fundamental origin to low temperature heterogeneous plasticity.
Although kinetic freezing does not explicitly occur at the plastic transition temperature when
the modified Gaussian is used, the proximity of the freezing temperature to the plastic transition
temperature at low temperatures might still have an influence on the barrier statistics. At higher
temperatures, far from the kinetic freezing regime, the statistics is more homogeneous with all
heterogeneous volume able to deform via the apparent barrier energy at that temperature, leading to
a correspondingly homogeneous plasticity.



In conclusion, a thermal activation hypothesis in conjunction with an exponentially large number
of available structural transformations, whose energy barriers follow a distribution with extensive
first and second moments, has been used to investigate the characteristic plastic rate of BMGs. It is
found that there exist two temperature regimes of deformation: 1) a high-temperature regime where
the stress at which significant plastic activity occurs, rapidly rises with reducing temperature and
an exponentially large number of structural transformation are available for plastic deformation to
occur and 2) an approximately linear regime of stress versus plastic transition temperature in which
the available number of thermally accessible structural transformations has drastically reduced. This
latter regime is found to be intimately connected to the phenomenon of kinetic freezing in which
the statistics of extremal values centred on a single dominant barrier energy scale controls those
structural transformations that are thermally accessible.
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