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The stress at which the first discrete plastic event occurs is investigated using extreme value

statistics. It is found that the average of this critical stress is inversely related to the deforming

volume, via an exponentially truncated power-law. This is demonstrated for the first pop–in event

observed in experimental nano-indentation data as a function of the indenter volume, and for the

first discrete plastic event seen in a dislocation dynamics simulation. When the underlying master

distribution of critical stresses is assumed to be a power-law, it becomes possible to extract the den-

sity of discrete plastic events available to the crystal, and to understand the exponential truncation

as a break-down of the asymptotic Weibull limit. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4971871]

I. INTRODUCTION

Intermittent plastic activity is of contemporary interest

since the phenomenon exhibits some degree of criticality

and thus the universal physics of avalanche phenomenon.1

First demonstrated via acoustic emission during creep

experiments on ice,2,3 the obtained histograms of energy

release were found to exhibit a power law form over a wide

range of energies. In the work by Miguel et al. 2, two dimen-

sional dislocation dynamics simulations gave similar results.

Subsequent dislocation dynamics simulation4–7 and theory

work8–10 have repeatedly shown this same behaviour in

terms of the statistics of the plastic strain magnitudes.

Another experimental approach to measuring intermittent

plasticity is via the “smaller is stronger” paradigm first dis-

cussed by Uchic and co-workers.11 Here, due to the micron

sized samples, a nominal flat-punch nano-indenter could

resolve individual plastic events to demonstrate the intermit-

tent plasticity and some aspects of scale free behaviour.12–14

The above works have mainly concentrated on the statis-

tics associated with the discrete plastic event, involving

either energy release, plastic strain magnitude, or the ava-

lanche velocity,6,15 but not that of the critical stress at which

the event occurs. This focus has partly arisen from the view

that the plastic strain event is the material “response” to the

“stimulus” of an applied stress, and that in near criticality,

this material response is only weakly correlated with the

stimulus. Despite this, the stress variable has played an

important role in recent works investigating the theme of to

what degree a material is in a state of criticality. When the

global yield of a material is viewed as a static depinning

transition,9,10,14 criticality is only achieved at the depinning

stress. Below this stress, the statistics associated with the

plastic strain event is truncated from a pure power law distri-

bution by scaling functions depending on how far away the

applied stress is from the critical stress. The alternative view

of yield as a dynamic unjamming event16,17 has the material

in a critical state at all applied stresses.7 Here, the dislocation

dynamics simulations show a stress and system size depen-

dent truncation of the plastic strain statistics which does not

diverge at a certain external stress.

From an engineering perspective, the stresses at which

plasticity occurs are of crucial importance. If the onset of

plasticity is associated with the global failure of a material,

one very useful approach to understand the statistics of the

failure stress is via the weakest link principle associated with

extreme value theory—the so-called Weibull approach.18,19

Here, a realization of a particular material is given by a

sequence of M critical stresses, the smallest (weakest) of

which will correspond to the stress at which the material

globally fails. For a flaw-based failure scenario, these critical

stresses correspond to and characterize the M regions within

the material containing the flaws. Mathematically, such a

characterization of the material is given by a positive valued

master probability density function (PDF) of critical stresses

and M ¼ qV where q is the flaw density. Sampling this mas-

ter distribution M times, the statistics of the smallest value is

found to be well described by the Weibull distribution.20

Indeed, the Fisher-Tippett-Gnedenko (FTG) theorem21,22

states that for a very broad class of positive valued probabil-

ity distributions and for sufficiently large values of M, the

statistics of the minimum (extreme) value is well described

by a Weibull distribution with the corresponding scale and

shape parameters that do depend on the probability distribu-

tion and M.

For strongly heterogeneous ceramics and brittle metals,

in which global failure is known to originate from a single

local flaw, Weibull statistics can well describe the fluctua-

tions in the corresponding failure stress. However, for a gen-

eral crystalline metal, yield is an emergent phenomenon

associated with the collective behaviour of the underlyinga)Peter.Derlet@psi.ch
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dislocation network, and extreme value statistics or the

weakest link principle is not expected to be so useful.

It has however long been recognized that the onset of

permanent deformation is very dependent on the instrumental

resolution of the deformation apparatus and that the transition

to global yield is preceded by a plasticity that Chalmers first

termed as the micro-plasticity.23 Indeed, many years ago

Tinder and co-workers,24,25 using torsion with an incredible

strain resolution of �10�8, showed such plasticity could

occur in the Cu and Zn crystals well below their known yield

stresses via discrete and intermittent plastic events. Between

such plastic events, perfectly elastic regions of deformation

were observed with corresponding moduli comparable to that

determined by ultrasound techniques. This latter aspect dem-

onstrated the high quality of these early torsion experiments.

Thus, with sufficient strain resolution, the transition to

bulk yield is a gradual but discrete process mediated by inter-

mittent plasticity—a viewpoint that is quite consistent with the

modern work of stochastic plasticity, which indicates that at

low enough stresses, the strain displacement distributions asso-

ciated with the initial plastic events are truncated power-laws

resulting in a local, less collective plasticity.7,9,10,14 This

regime of plasticity should therefore be amenable to the

extreme value statistics framework, where the material admits

a density of uncorrelated regions defined by critical stresses at

which local plasticity can be initiated. The corresponding mas-

ter distribution (along with M ¼ qV) would therefore charac-

terize the underlying microstructure prior to loading in terms

of these critical stresses. This approach has been taken in Refs.

26 and 27 to reveal a size effect in the onset of plasticity for

uniformly loaded samples. Here, the larger the deforming vol-

ume is, the greater the M is, and therefore, the lower the initial

critical stresses are. For the case of bulk plasticity and its asso-

ciated stress-strain curve, Derlet and Maaß26 found that such a

size effect is negated by the opposing size effect in plastic

strain where all local plastic strain magnitude scales are

inversely related to the sample volume, a result emanating

from Eshelby’s classic plastic-inclusion work.28

The present work applies the extreme value statistics

approach to the critical stress associated with the first plastic

event of a generic intermittent plastic deformation sequence.

Sec. II develops the needed procedure to predict the Weibull

distribution describing the statistics of the first critical stress

for sufficiently large system sizes and discusses how devia-

tions away from the asymptotic Weibull form can be used to

obtain an estimate of the density of available plastic events.

Sec. III applies the developed framework to rationalize

recently published pop-in stress statistics of nano-indentation

data as a function of the indenter size,29,30 as well as the first

critical stresses obtained from dislocation dynamics simula-

tions in the presence of a fixed internal stress field.5 Sec. IV

concludes with a discussion of the consequences of these

findings, and what other experimental and simulation data

the developed procedure could be applied to.

II. THE STATISTICS OF THE FIRST CRITICAL STRESS

As discussed in Sec. I, one approach to quantify the sta-

tistics of the first critical stress is to assume that the material

can admit M plastic events and that the corresponding criti-

cal stresses are derived from an underlying master PDF,

P½r�, which characterizes the initial plastic response of the

material. The stress statistics of intermittent plasticity is then

embodied in the order statistics31 of this sequence of M criti-

cal stresses. In practice, this is done by sampling P½r�, M
times, and arranging the resulting stresses in ascending

order: fr1;…; rMg, where r1 is the first critical stress and

the focus of the present work.

For sufficiently large M (sample volume), the fluctua-

tions of r1 are described by a Weibull distribution defined by

a scale parameter and a shape parameter. Whilst the Weibull

form is independent of P½r�, the actual values of the scale

and shape parameters do depend on P½r�. In particular,

the scale parameter, r�1, may be determined from the

definition26,31,32

1

M
_¼
ðr�

1

0

drP½r� ¼ P<½r�1�: (1)

Here, P<½r� is the cumulative distribution function (CDF) of

P½r�. The identification of r�1 with the scale parameter of the

Weibull distribution is only valid in the asymptotic limit of

large M and therefore small r�1. In this regime, it is assumed

that the master distribution has the power-law form

P½r� � ra; (2)

giving, via Eq. (1),

r�1 �
1

M

� �c

; (3)

where c ¼ 1=ð1þ aÞ. A power-law form is motivated by the

fact that many interacting systems are known to exhibit such

behaviour—see, for example, the recent review on marginal

stability where the master distribution is referred to as the

pseudo-gap function.33

For asymptotically large M, Appendix A demonstrates

that 1=c is the Weibull shape parameter, and r�1 is the

Weibull scale parameter. Thus, via the scaling in Eq. (3), the

Weibull statistics of the first critical stress is fully defined.

One immediate result is the average first critical stress, hr1i,
is linearly related to r�1 via

hr1i½x� ’ C½1þ c�r�1½x�; (4)

where x _¼ 1=M and C½�� is the gamma function. This pro-

vides a direct method to determine r�1 via the average value

of the first critical stress obtained from either experiment or

simulation. Indeed, via the assumption M ¼ qV, Eq. (3) can

be tested through a study of the average first critical stress

versus the plastic volume.

It is emphasized that the approach entailed in Eqs.

(1)–(4) is valid only for asymptotically large M. One goal of

the present work is to investigate how well the above holds

for finite values of M. In fact, it is demonstrated in Sec. III

that the average first critical stress seen in experiment and

simulation is well described by
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hr1i½x� ¼ r0e�lxxc; (5)

for 0 � x < xc ¼ c=l. Here, r0, l, and c are parameters to be

determined. Using M ¼ qV, this may be rewritten as

hr1i V½ � ¼ r0

qc
e�l= qVð Þ 1

V

� �c

¼ �r0e�
�l=V 1

V

� �c

: (6)

Eq. (6) is fitted directly to hr1i versus V with the parameters

being �r0; �l, and c. For sufficiently large M, c and r�1 (via

Eq. (4)) can be identified as the Weibull shape and scale

parameters, respectively.

The above gives c and therefore a, which is the exponent

for the master distribution of critical stresses and therefore a

material parameter characterizing the initial micro-structure.

The above expressions are valid for a homogeneous external

stress field. For a nano-indentation geometry, a generaliza-

tion to an inhomogeneous external stress field is needed.

This is done in Appendix B. Concerning the validity of the

present formalism, M is an integer which must be greater

than one. Thus, for sufficiently small volumes (which might

not contain a plastic event), M will be mainly zero with

hMi < 0. In this regime of small enough sample volume, the

present formalism can no longer be applied and reflects a

possible change of mechanism—a limit that is encountered

experimentally in the present work, when sufficiently small

volumes are probed with nano-indentation.

Whilst the procedure concerned with Eq. (6) can yield

both the scale and shape parameter, no insight into the mate-

rial parameter q, and therefore M, can be gained. Moreover,

since �l ¼ l=q and �r0 ¼ r0=qc, the fundamental parameters

l and r0 are also not determined. Assuming the master distri-

bution is a power-law for all values of relevant critical

stresses, Appendix C develops an exact expression for the

average first critical stress as a function of M, which closely

follows the empirical form of Eq. (5) when M> 10. In this

developed expression, which essentially characterizes the

breakdown of the asymptotic Weibull limit, the parameter

l is now a function of c (see Eq. (C8) and Fig. 5(a) in

Appendix C), allowing q and r0 to be now directly esti-

mated. In addition, the analysis of Appendix C demonstrates

that when M> 50, the asymptotic Weibull limit is well

followed.

III. APPLICATION TO EXPERIMENT AND SIMULATION

A. First pop-in stress from experimental
nano–indentation data

Nano-indentation provides a reliable and accurate probe

into the plastic properties of a material region directly below

the indenter tip. The initial elastic response is well described

by Herzian contact theory,34 and the non-negligible plasticity

generally manifests itself as an abrupt deviation from

Herzian behaviour. The critical stress at which this discrete

plastic event occurs is referred to as a pop-in stress. In a

recent series of papers, Pharr and co-workers,29,30 measured

such pop-in stresses of a (100) Mo single crystal for different

indenter radii ranging from 700 lm down to 0.56 lm.

The work is distinguished by the very large number of

nano-indentations per intender size, and the range of indenter

sizes. They found that with decreasing indenter radius, the

critical pop-in stress increased in a systematic way. In

Sudharshan Phani et al.,30 this trend was rationalized via a

stochastic deformation model involving two microscopic

deformation mechanisms—the general activation of pre-

existing dislocations and the nucleation of dislocations in

dislocation free environments for the smallest indenter radii.

The present work considers such pop-in stresses as the

first critical stress of the formalism developed in Sec. II. In

doing so, it is implicitly assumed that the statistics of the first

plastic event arises directly from the physics of the underly-

ing dislocation network and not, for example, from a distri-

bution of surface imperfections—unknowns that are always

present in such an experiment.

For each indenter radius, r, the critical stresses are taken

directly from figure 10 of the study by Sudharshan Phani

et al.,30 averaged and plotted in Fig. 1(a) as a function of the

indenter radius. Also included in Fig. 1(a) is a fit to Eq. (6)

assuming V ¼ r3. Comparison of this fit to the experimental

nanoindentation data is good apart from the largest and two

smallest indenter radii. The obtained parameters are

FIG. 1. (a) Logarithmic plot of measured pop-in stress as a function of the

indentation radius, and an associated fit of Eq. (6). (b) Plot of the experimen-

tal indentation cumulative distribution function (CDF) data for each indenter

radius with the corresponding predicted Weibull CDF. Experimental inden-

tation data taken from figure 10 of the work by Sudharshan Phani et al.30

225101-3 P. M. Derlet and R. Maaß J. Appl. Phys. 120, 225101 (2016)
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�r0 ¼ 27:12360:979 GPaðlmÞ�c; �l ¼ 1:18960:105 lm, and

c ¼ 0:22560:006.

By performing such a fit, it is asserted that M ¼ qV
¼ qr3 and that the relevant plastic volume depends only on

the length scale associated with the indenter radius. In fact,

the relevant plastic volume scales with the cube of the contact

area radius a and not the indenter radius r. The two length

scales are however related through the indentation depth, h,

via a ¼
ffiffiffiffiffi
rh
p

. Since the stress within this plastic volume

scales as
ffiffiffiffiffiffiffi
h=r

p
¼ a=r (see Refs. 34–36), a higher stress

corresponds to a larger indentation depth, therefore a larger

contact area and thus finally a larger plastic volume. This

additional scaling must be taken into account and results in

the exponent of the underlying master distribution equalling

a� 3. This result is discussed in more detail in Sec. III B.

With the knowledge of the shape (1=c) and scale (r�1 via

Eq. (4) for each indenter radius) parameters, the correspond-

ing Weibull distribution is completely defined for each

indenter radius. Fig. 1(b) plots the corresponding Weibull

CDFs along with the experimental nano-indentation data (of

figure 10 in Sudharshan Phani et al.30) showing a reasonable

agreement with the experiment down to an indenter radius of

3.75 lm. It is emphasized that the shown Weibull cumulative

distribution functions are not fitted directly to the data in Fig.

1(b), but rather obtained (via their shape and scale parame-

ters) from a fit of Eq. (6) to the data of Fig. 1(a).

For the larger indenter radii, Morris et al.29 consider a

plastic model characterized by a density of defects (qdefect)

and their mean critical stress. In their work, the statistical

size effect with respect to indenter radii is seen to originate

from the probability that there exists, within the plastic zone

beneath the indenter, at least one defect which has this mean

critical stress. If this is the case, then a pop-in will occur

with certainty. The random aspect arises from the assump-

tion that the defects are uncorrelated in their spatial position

and therefore the probability of encountering one such defect

(and therefore a pop-in event) follows a Poisson distribution

with a mean qdefectV, with V being the relevant plastic vol-

ume. Thus, the fundamental stochastic construct is, given a

well defined critical stress, how likely is it that a volume V is

encountered beneath the indenter which induces the pop-in

with certainty? The present work considers the reverse con-

struct; given a volume V, what critical stress is encountered

beneath the indenter that induces the pop-in with certainty?

Thus, instead of a Poisson distribution of volumes, a master

distribution of critical stresses is assumed. From this per-

spective, both approaches are equally viable and compatible.

The absence of the predicted scaling and resulting

Weibull CDFs for the two smallest indenter radii suggests a

failure of the entire extreme-value-statistics approach at

these shortest length-scales. In quite general terms, the valid-

ity of the current approach is expected to break down at

some minimum length scale due to either the dominance of

boundary effects of the small plastic volume or the entry of a

homogeneous dislocation nucleation regime. In fact, the

work of Sudharshan Phani et al.30 has attributed precisely

the latter scenario to the two smallest indenter radii consid-

ered in the study by Morris et al.29

The results of Appendix B are now used to extract an

estimate for q. For the case of the experimental nanoindenta-

tion data, Fig. 5 gives l½c ¼ 0:225� ¼ 0:136, giving q ¼ �l=l
� 0:12 ðlmÞ�3¼1:1	1017 (m3Þ and r0¼qc�r0�16:7 GPa.

Using M¼qr3;M’39247493, 1044616, 5339, 613, 33, 6,

0.4, and 0.02 for respective indenter radii of 700, 209, 36,

17.5, 6.62, 3.75, 1.5, and 0.58 lm. For the larger indenter

radii, M becomes quite a large number, and it is justified to

employ an extreme value statistics framework to describe

the statistics of the pop-in stresses. However, as the indenter

radius reduces, M rapidly decreases, eventually to below

unity for the two smallest indenter sizes. This latter regime is

clearly outside the present formalism based on the statistics

of the extreme and, as discussed in the previous paragraphs,

a regime of indenter sizes which Sudharshan Phani et al.30

have attributed to a change in the underlying microscopic

deformation mechanism. Such a change in mechanism with

decreasing indenter size is well known.37 The estimated

density of available plastic events, q, is one order of magni-

tude larger than that in Morris et al.29—an expected

discrepancy since the plastic volume beneath the indenter

can be between one and two orders of magnitude larger than

r3. Alternatively, interpreting q directly in terms of indenter

volume, the length scale ð1=qÞ1=3’2lm is precisely the

indenter radius below which a change of mechanism has

been proposed and for which the present analysis does not

work. Because of the rapid increase in M with indenter

radius, no improvement on the predicted critical stress statis-

tics could be gained by using the exact expression for PM½r�
(Eq. (C5)).

B. The first critical stress in a dislocation dynamics
simulation

The dislocation dynamics simulation method offers one

way to model the structural evolution at the resolution of

dislocations.38–41 Such models, in up to three spatial dimen-

sions, take into account the far-field elastic interaction

between dislocations and in many cases also the near-field

dislocation interactions such as annihilation, nucleation, and

more general reactions leading to dislocation multiplication.

The dislocation model used presently considers a single

plane of N infinitely straight edge dislocations under periodic

boundary conditions, with periodicity d. In addition to their

mutual elastic interaction, each dislocation experiences a

static sinusoidal stress field characterized by a stress ampli-

tude s0 and wavelength k0. Such an internal field can be

viewed as a static mean-field representation of the immobile

dislocation content, and the N dislocations as the dynamic

mobile dislocation content. Prior to loading, the explicit

mobile dislocation configuration is created by randomly

placing the N dislocations within the system length and

relaxing to a local minimum energy configuration. Although

simple, such a model is able to capture a number of features

of more complex two and three dimension dislocation

dynamics simulations, such as a well defined micro-plastic

regime that exhibits an avalanche behaviour, and a transition

to a plastic flow regime. For more details, see Ref. 5 which
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investigated a dipolar-mat geometry rather than the single

slip plane system mainly considered here.

For the present work, a deformation curve is obtained

via the application of a constant stress rate. During loading,

the dislocation configuration evolves according to an over-

damped dynamics characterized by a friction coefficient

whose inverse is the system’s mobility parameter. The

parameters presently used are those of Cu and the same used

as in the work of Derlet and Maaß.5

Fig. 2(a) displays the representative stress strain curves

for a number of different system sizes. For all deformation

curves, s0, k0, and the number of mobile dislocations per unit

k0 are the same. In particular, s0 ¼ 10 MPa; k0 ¼ 2 lm, and

the number of mobile dislocations per unit k0 is equal to one.

The figure demonstrates that with decreasing system size, d,

the stress strain curves become increasingly intermittent and

more stochastic. The stress-strain curves for the larger sys-

tem sizes converge to a loading response with a yield stress

of approximately half that of s0. Derlet and Maaß5 have

shown that this yield stress, and at what total strain it occurs,

is a function of s0, k0, and dislocation density.

To investigate the viability of the developed formalism

for this model system, the first critical stress is measured for

a range of system sizes spanning d¼ 20 lm (10 mobile

dislocations) to d¼ 1280 lm (640 mobile dislocations) at a

constant dislocation density using the same parameters as in

Fig. 2(a). For each d, two thousand loading sequences up to

the first plastic event are simulated resulting in two thousand

critical stress values. Fig. 2(b) displays the average critical

stress sequence plotted as a function of 1=d as a log-log plot.

The error bars correspond to the associated variances and

reflect the increased stochasticity with decreasing system

size. Also shown in the figure is an optimal fit of Eq. (6)

which, as for the case of the nanoindentation data, describes

the observed scaling very well. The optimal parameters are

c ¼ 0:77560:008; �l ¼ 5:85260:606 lm, and �r0 ¼ 42:362

62:021 MPaðlmÞ�c
.

The predicted Weibull distributions are plotted (solid

curves) in Fig. 3(a) and 3(b) along with histograms (sym-

bols) derived from the 2000 measured critical stresses for

each system size. Inspection of Fig. 3(a) demonstrates a

good agreement between the theory and simulation for the

larger system sizes. However, as the system size decreases,

poorer agreement is gradually observed in Fig. 3(b),

FIG. 2. (a) Stress versus total strain behaviour derived from dislocation

dynamics simulations for a range of periodicity lengths at fixed mobile dislo-

cation density. (b) Average first critical stress as a function of the inverse

periodicity length derived from 2000 loading curves for each system length

and the overall fit (show in red) to Eq. (6).

FIG. 3. (a) and (b) Plot of the dislocation dynamics simulation critical stress

histogram data for a range of system lengths with corresponding predicted

Weibull probability distributions (solid lines of similar colour). In (b), the

dashed lines represent the exact probability distribution for the first critical

stress (Eq. (A1)).
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particularly for the case when the periodicity length is less

than 80 lm.

The results of Appendix B are now used to extract

an estimate for q. For the case of simulation, Fig. 5 gives

l½c ¼ 0:775� � 0:673 giving q ¼ �l=l � 0:12 ðlmÞ�1
and

r0 ¼ qc�r0 � 7:9 MPa. Via M ¼ qd; M ’ 147, 74, 36, 18, 9,

5, and 2 for respective system lengths of d¼ 1280, 640, 320,

160, 80, 40, and 20 lm. Thus, for the smaller system lengths,

M is comparable to or less than ten, suggesting the asymp-

totic Weibull result should not work—as is the case in Fig.

3(b) for d< 80 lm. When P½r� is assumed to be quadratic

(Eq. (C1)), the exact extreme-value statistics distribution for

a given M, Eq. (A1), may be constructed. Fig. 3(b) plots

these exact distributions for the values of M¼ 9, 5, and 2 for

respective system lengths of d¼ 80, 40, and 20 lm as dashed

lines. With these exact distributions, agreement is improved

when compared to the corresponding Weibull distributions,

although for the d¼ 20 lm (M¼ 2) case, a significant dis-

crepancy still exists. Since PM!1½r� ! P½r�, in this regime

of small M, the statistics of the first critical stress will be

increasingly dependent on the actual high-stress shape of the

master distribution. Appendix B assumes that this distribu-

tion is a power-law cut off at r0 (here �0:79s0); however, at

higher stresses, the true master distribution is expected to

deviate from the assumed power-law distribution and termi-

nate more smoothly. The discrepancy seen in Fig. 3(b) for

the d¼ 20 lm therefore suggests a distribution that has a

higher probability density than that of a simple power-law

and therefore a smooth termination that occurs somewhat

below r0.

A value of q � 0:12 corresponds to a mean distance

between the plastic events equal to approximately 9 lm. This

represents one plastic event per every four k0 units. The dis-

location density used for the present simulations corresponds

to one dislocation per k0 unit. Inspection of the explicit dislo-

cation dynamics reveals, for the larger system sizes, the first

discrete plastic event is located in regions containing either

two or three dislocations within one k0 unit.42 Given that the

dislocation configuration prior to loading is randomly cho-

sen, the average spacing between configurations involving

three dislocations within one k0 unit is approximately three

k0 units—a number quite compatible with the obtained esti-

mate of 1=q.

To investigate the role of a changing q as a function of a

fixed system length, the single dislocation dynamics simula-

tions are repeated for the dipolar mat geometry (considered

in the study by Derlet and Maaß5) which adds a second par-

allel slip plane to the one dimensional system. This second

slip plane has dislocations with a burgers vector whose direc-

tion is anti-parallel to those in the first slip plane. Within

each slip plane, the dislocation density, and therefore dislo-

cation number, is the same; however, the total dislocation

number for a given periodic length now increases by a factor

of two. In this geometry, dislocations interact within each

slip plane and across the two different slip planes. Following

the study by Derlet and Maaß5, the distance between the two

slip planes is chosen to equal the mean distance between dis-

locations within the slip planes.

Fig. 4 plots the first critical stress as a function of the

inverse periodic length for both the dipolar mat and a single

slip plane (already shown in Fig. 2(b)) simulations.

Inspection of this figure shows that, with the addition of a

second slip plane, the scale of the first critical stresses

reduces. Fitting Eq. (6) to these data gives c ¼ 0:81860:010;
�l ¼ 2:83460:772 lm, and �r0 ¼ 31:14861:816 MPaðlmÞ�c

.

From C, l½c ¼ 0:818� ¼ �l=l � 0:727 giving q � 0:26 ðlmÞ�1

and r0 ¼ qc�r0 � 10:2 MPa ¼ 1:02s0. Hence, with the addi-

tion of a second slip plane, the density of the available plas-

tic events increases by a factor of approximately 2.2 whilst

the parameters c and r0 change by much less. These numbers

are not so different to what one would expect when switch-

ing off the inter-plane interactions, which would trivially

give no change in c and r0, and a factor of two change in q.

A doubling of q entails a doubling of M for a given system

length, and thus a closer proximity to the Weibull limit—a

trend reflected in Fig. 4, which shows a reduced exponential

truncation for the dipolar mat data.

IV. DISCUSSION AND CONCLUDING REMARKS

Sec. III finds the exponent of the master distribution is

a� 3 ’ 0:44 for the case of the experimental nano-

indentation data, whilst for the dislocation dynamics simula-

tions, a value of a ’ 0:30 is obtained. If the two exponents

were the same, it could be argued that the probed local insta-

bility in both cases is associated with the physics of a single

slip system. The one dimensional dislocation network con-

sidered in Sec. II then models the case of a single effective

slip plane in which the applied shear stress is the resolved

shear stress on that plane. Here, the internal static stress field

used in Sec. II would then characterize the effect of the sur-

rounding three dimensional network. For the complex three-

dimensional geometry of the nano-indentation experiment,

what is actually measured is the indentation depth and load

at the first pop-in, from which a maximum resolved shear

stress is calculated and taken as the stress at which the pop-

in occurred. This naturally represents a non-trivial average

FIG. 4. Average first critical stress as a function of the inverse periodicity

length derived from 2000 loading curves for each system length for both the

single plane (blue data) and dipolar mat (green data) system. Optimal fits to

Eq. (6) are also shown as solid lines.
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over many slip planes. However, this would only affect the

pre-factor and not change the exponent of the effective distri-

bution from that of a single slip plane.

The actual differences between the exponents must

therefore originate from more fundamental considerations

such as the universality class the plasticity belongs to.

Indeed, the one-dimensional dislocation model system con-

sidered here belongs to a mean field depinning universality

class in which the first plastic event is expected to be far

from the tuned-criticality occurring at the depinning stress

(see Ref. 5). On the other hand, more complex dislocation

simulations suggest a non-mean field universality class for

which criticality occurs at all stages of deformation.7 If the

dislocation network is in a state of criticality at the very first

plastic event, then marginal stability indicates the value of a
is a universal exponent.33 To date, no marginal stability anal-

ysis has given a prediction for a for the case of a dislocation

network. The present work therefore gives initial indications

of what the exponent might be.

To investigate the extreme value statistics approach to the

onset of plasticity further, two avenues are available. For

modelling, two and three dimensional dislocation dynamics

simulation could give insight into the dependence of the expo-

nent, a, on many active and interacting slip-planes, and on the

universality class that the dynamics belongs to. Simulation

work of this type has shown that if the simulated system is suf-

ficiently large (greater than 5–10 lm), then a weakest link—

extreme value—scenario is observed, whereas below this

length-scale, mechanisms specific to the small system size

become operative.43,44 On the experimental side, a tensile

geometry does not suffer from the inherent instabilities of a

compression experiment and has a simple stress geometry

when compared to the nano-indentation. Therefore, one prom-

ising avenue to obtain the statistics of the first critical stress

event as a function of system size is through the tensile defor-

mation of metallic columns. Such micro-wires can be prepared

via directional solidification and can result in single crystal col-

umns with diameters ranging between �1 and �100 lm.45–48

The current work has demonstrated, for both experimen-

tal nano-indentation data and a dislocation dynamics simula-

tion, that the stress scale of the first discrete plastic event

follows an inverse power-law of the plastically deforming

volume. It is found that the corresponding statistics of the

first critical stress event is described by extreme-value-statis-

tics, allowing for the successful prediction of the Weibull

statistics using only this scaling relation and the assumption

of an underling power-law master distribution of critical

stresses. Remarkably, the extracted master-distribution expo-

nent derived from experiment is comparable to that found

for the dislocation simulations, which model a single slip

system in the presence of a static internal stress field. For

smaller systems, the observed deviations away from the

asymptotic Weibull limit are exploited to extract an estimate

for the density of plastic events.
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APPENDIX A: DERIVATION OF THE WEIBULL
DISTRIBUTION

The probability of choosing a lowest critical stress r
when sampling the probability density function P½��, M times,

can be written as

PM½r� ¼ MP½r�ð1� P<½r�ÞM�1; (A1)

where the factor ð1� P<½r�Þ gives the probability of not

sampling a critical stress less than or equal to r. This must

occur M – 1 times with one additional sampling of the proba-

bility density function yielding the required lowest critical

stress. This latter successful sampling can occur anywhere

between the first and Mth sample, leading to the factor M in

the above equation. For large M

ð1� P<½r�ÞM�1 ’ exp½�MP<½r��; (A2)

giving

PM½r� ’ MP½r� exp½�MP<½r��: (A3)

Writing P<½r� ¼ f ½r1
c� and Taylor expanding f ½�� around the

value ðr�1Þ
1
c, gives

P< r½ � � f r�1
� �
þ f 0 r�1

� �
rð Þ

1
c � r�1
� �1

c

	 

: (A4)

Here, f 0½��, is the derivative with respect to the argument of

f ½�� and not r. From Eq. (A4), the probability density func-

tion in the vicinity of r�1 is then approximated by

P r½ � � 1

c
f 0 r�1
� �

rð Þ
1
c�1: (A5)

With the above approximations, and since f ½ðr�1Þ
1
c�

¼ P<½r�1� ¼ 1=M, Eq. (A3) becomes

PM r½ � ’ 1

crW

r
rW

� �1
c�1

e� r=rWð Þ
1
c
exp

r�1
rW

� �1
c

� 1

" #
; (A6)

where

rW ¼
1

Mf 0 r�1ð Þ
1
c

h i0
@

1
A

c

¼
f r�1ð Þ

1
c

h i
f 0 r�1ð Þ

1
c

h i
0
B@

1
CA

c

: (A7)

For a sufficiently large M, r�1 will be small enough to probe

the power-law part of the P½r� and Eq. (A7) reduces to

rW ¼ r�1. Thus, Eq. (A6) reduces to the Weibull distribution

PM r½ � ¼ 1

crW

r
rW

� �1
c�1

e� r=rWð Þ
1
c
; (A8)

with 1=c being the Weibull shape parameter and r�1 being the

Weibull scale parameter, rW.
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APPENDIX B: INTERPRETATION OF VOLUME
EXPONENT FOR AN INDENTATION GEOMETRY

An infinitesimal material volume d3r located at r with a

stress equal to r½r� is first considered. The probability that

this region admits a plastic instability is given by

qd3rP<½r½r��. The criterion for an instability to occur within

the material volume V is then given by

q
ð

V

d3rP<½r½r�� ¼ 1: (B1)

For a constant stress field, r�1 ¼ r½r�, the above equation

becomes qVP<½r�1� ¼ 1 and reduces to Eq. (1).

For an indenter geometry, the internal stress field will

have the form r½r� ¼ r0f ½r=a� (see Ref. 36) where a is the

contact radius, and r0 is the maximum resolved shear stress

under the indenter (see Ref. 29). r0 has the scaling �a=r
where r is the indenter radius. Changing the integration vari-

able to �r ¼ ar and assuming P<½r� � ratrueþ1, the left hand

side of Eq. (B1) scales as

�qa3ratrueþ1
0

ð
V

d3�rðf ½�r�Þatrueþ1 � qr3ratrueþ4
0 : (B2)

In the first scaling, the integral is independent of the contact

radius a and indenter radius r, and only contributes a con-

stant pre-factor. In the second scaling, which ignores the

constant integral, r0 � a=r has been used to express the fac-

tor a3 in terms of r0 and r.

Equating Eq. (B2) (via an appropriate constant pre-fac-

tor) to unity, Eq. (1) is again obtained but with the effective

exponent, a ¼ 3þ atrue, giving

r�0 �
1

r3

� � 1
aþ1

¼ 1

r3

� �c

: (B3)

Thus, for the case of indentation, the obtained exponent a
(from which the shape parameter of the corresponding

Weibull distribution is obtained) gives the underlying proba-

bility distribution of the material’s critical stress as

atrue ¼ a� 3.

APPENDIX C: A POWER-LAW MASTER DISTRIBUTION

Here, it is assumed that the underlying master distribu-

tion is a pure power-law up to a cut-off critical stress r0,

beyond which it is zero

P r½ � ¼ 1

cr1=c
0

r
1
c�1; (C1)

for r < r0. This gives

P< r½ � ¼ r
r0

� �1
c

; (C2)

and, via Eq. (1)

r�1 ¼ r0

1

M

� �c

: (C3)

Eqs. (C1) and (C2), and Eq. (A1), can now be used to

construct the exact first critical stress distribution

PM r½ � ¼ M

cr1=c
0

r
1
c�1 1� r

r0

� �1
c

 !M�1

; (C4)

from which an exact expression for the average first critical

stress is obtained

hr1i M½ � ¼ Mr0

C 1þ c½ �C M½ �
C M þ 1þ c½ � (C5)

_¼C 1þ c½ � r0

1

M

� �c

P c;
1

M

� �
: (C6)

Here, P½c; 0� ¼ 1 and C½�� is the gamma function.

Fig. 5(a) plots P½c; x� and expð�l½c�xÞ for the experi-

mental and simulation values of c, using the respective fitted

values l½c ¼ 0:225� ¼ 0:136 and l½c ¼ 0:775� ¼ 0:673. Thus,

P½c; 1=M� � expð�l½c�=MÞ for M> 10, and Eq. (C6) may

be approximated as

FIG. 5. (a) Solid lines are a plot of P½c; 1=M� versus M for the simulation

exponent c ¼ 0:775 and the experimental exponent c ¼ 0:225. The corre-

sponding dashed lines give the approximate representation via expð�l½c�=MÞ
with l½c ¼ 0:775� ¼ 0:673 and l½c ¼ 0:225� ¼ 0:136. (b) Plots the numeri-

cally determined l½c� versus c.

225101-8 P. M. Derlet and R. Maaß J. Appl. Phys. 120, 225101 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  129.129.195.84 On: Thu, 08 Dec 2016

14:58:07



hr1i M½ � � C 1þ c½ � r0

1

M

� �c

exp �l c½ �=M
� �

; (C7)

which is of a similar form to Eq. (5) with the parameter

l now depending on c. Fig. 5(b) plots the optimal value of

l½c� versus c for 0 < c � 1.

Using Eq. (C4), Eq. (C7) may be written as

hr1i M½ � � C 1þ c½ � r�1 P c;
1

M

� �
: (C8)

Inspection of Fig. 5(a) shows that Eqs. (C7) and (C8) tend

respectively to Eqs. (3) and (4) for M> 50, demonstrating

the asymptotic Weibull limit remains a good approximation

for quite small values of M.
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